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q.ny'f,
The main purpose of this note is to report on some conditions under
which a given convex mappi -

- with values in the normed lattice
Y and defined in the Banach space X) is '

Gateaux or Frechet differer ble ir
the *majority” of the points of its domain of continuity, i.e. at | '

me dense G, subset of dom (F). This problem is well known in t e par
wben‘Yis the real line [*"']. Spaces named lund spaces (wea
plund spaces) are just those Banach spaces A in which every

~ convex real-valued function f;: X >R hﬁl_ % lifferen




ed at every point ol
such that the set 1" :
In the case of h
Corollary. If X is a Banach s
and F: X — Y is a con
is locally bounded.

This r

Graph of the GMM he set GI
<aid to be maximal if its graph 18 not
other GMM. Kusraev [ proved that

are maximal GMM. i
g ll.':’t 'u.s recall that the multivalued map
(resp. lower) semicontinuous at the point xeA™
(resp. TxnU=+2) there exists an Open NEIgHL
(resp. Tzn T+ ¢) for all zcV. e

The sets U(x,¥) {rl(-l:()(, ¥Y): ’
a locally convex topology 1n

the norm topology by 7. -
Proposition 1. Let X be a Banach space,

. L(X. ¥) be a maximal GMM with non-emp
2) 7" has a closed graph In (X, n) X (LIX,

b) 7 has compact images Ino (L(X, Y), s) if
tervals in (Y, w). iy
c) If Y is reflexive, then T: (X, n) — (KX

at every point of X i ; f
Part b) of this proposition was obtained in

vex mappings. In the classical situations, i. e. ¥=
in [9]. o
Proposition 2. Suppose X is a normed space,
a GMM and x¢X. Then T is single-valued at x
(y*oT): X — X* are single-valued at x for all yeX3
lower semicontinuous at the point x, them Vi
I V=R this result is contained in the papes
proposition 3. Let X be a Banach space, Yb
f every monotone mapping @:X — X% with no
lued at the points of some dense (, subset of
. [(X, Y) with non-empty images is single-valued
(; subset of X.

The requirement of this proposition 1575
strictly convex norm [% (in particular, if X is a8
plund space [6]. If Y is order complete, then the s
differential dr at the point x is equivalent to &
convex mapping F at x (see [!, p. 233). Thus
this result and Proposition 3. L

Theorem 4. Let X be a normed space, ¥
be a continuous convex mapping, x€X and
Or(2)+ # whenever | z—x||<e. Then F is Freche
only if the GMM 0dg: (X, n) — (L(X, ¥), r) is Sit
tinuous at x. g

Proposition 4. Let X be an order complete

compact intervals iff every GMM with non empty
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by Px= x|, where | x|
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