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be a convex Mapping defined ip the Banach Space X wit}
e K eThn question of differentiability of F almost Everywhere in X (jy the Baire
catego% sense) is studied. Ag the ex
i

amples show the problem js not trivial even in the case
when S the usual real [ipe R. For X —= Rp it is shown that every conyex mapping F: Xy
is Frechet differentiable at tpe points of so

me dense Gz subset of X iif ¥ has weakly com-
pact intervals. This result as well ag some

others are obtained as corollaries of theorems cop-
cerning generalized monotone mappings. Some examples are given which outline the theory,

0. Convex, mapping with values in a vector lattice have been the subject
of much research in the last years. They were studied by many authors in
different dir,eiqtions (8ee [1: 7. 13; 1(4; 1?1;4]1)9; 22; 24]). The generalized mo-
notone mappings also got attention (see . ‘
‘Q%'Q%%e mggn %urpose goi’ this article is to prove the results announced mjgggl
and some new similar results, i,e, ns under which
given convex mapping F: Xep s F (Gateaux) differentiable at the
ointiuats a dense Gs subset of X, These differential Properties of convex
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In the special case when ¥=R the definition
known definition of a monotone mapplnf or mon |
Minty [17]). The subdifferential dp of a convex mag
multivaled mapping 7: X—L is a GMM iff
(yPoT): X—=X% (¥eTik={y*eA: AETx}
y*¢ V. The graph of the GMM is the set GT ={(x, A)eXXL:
Zaid to be maximal if its graph is not properly “’mal“"”
other GMM. Kusraev [14] proved that the’ subdifferentiz
plng l" a ”la.‘imal G_\',\‘. B ' means 0' Zorns lemma lt 's "’
GMM. o
In what follows we shall consider GMM for which Tx$+@ for

1. Continuity Properties of Generalized Monotone Mappl 3s.
fellar [21] proved that every monotone mapping T: X=X is locall
bounded. This result can be generalized. ; ,-*

Theorem 1.1. Suppose that X is a Banach space, Y Iis a normea eae=
tice and T: X—L(X,Y) is a GMM. Then T is locally bounded at ever
point of X, iLe. for x,€X there exists a neighbourhood V of x, such that

the set T(V)— U{Tx: x¢V} is a bounded subset of L(X,X). ¢ b

Proof. We use the idea of Rockafellar’s proof. The following len
the key point for the proof of the Theorem I.1. Tk
Lemma. If there exist two bounded sets: a set ScAX, int ¢©
and a set U—=L such that Tx U+ QD for every x€S, Then T is loca
bounded at every point of intcoS. T .
_Proof of the Lemma. Let x¢intco S. There is £>0 such that B(x, 2¢)

~coS(B(x, e) denotes the closed ball with center x and radius &). We A

arbitrary x€B(x,€), A€Tx, u¢S and A€ 7u(1U. We shall make use 'ﬁi' h

monotonicity of 7. For every y*¢ ¥4, || y*||=1 we have (A(e—x), y*)=(A;(—

vl A, (|u||+] x]).]| ¥*| =C where the constant C depends only on it
sets & and (. Since the set M={u¢X: (A(u—x), y*)=C} is closed a
convex and S=M, then coScM. It follows that for z€X and | 7|
x+€/20€ B(x, £)—M_ which is equivalent to |(Aw, y*)|<2C/e. Since ¥ is a'la:
tice then (Aw, y*)|=4C/e for all y*¢Y*, || y*||<1. The last inequality show
that || A 4C/e. The Lemma is proved. A &
Let us now consider the sets S,={x¢X: ||x|=n and Tx[]B(0, n)+D}
T has nonempty images and hence X= Un=:S, There exists n, such that
int co S, @. We apply the Lemma for §: =S, and U : =B5(0; r,) and OJJ.'-”;
tain that 7" is locally bounded at the points of intcoS,. Let us now -
x€X, we'll prove that 7 is locally bounded at x. For that purpose we choo
x€intcoS,, e>0, x,=x+¢e(x—x) and A,¢ Tx,. Let V/ be suchan openne
bourhood of x that 7(V) is a bounded subset of L. We apply again the Lemii
but now for S: =V {x} and U : =T(V) U {A,}. Since x¢intcoS, T
cally bounded at the point x. The proof of the Theorem 1.1 is finish

Corollary 1.2. Let X be a Banach space, Y be a normed
F: XY be a continuous convex mapping and 0g(x)F Q@ for all poi
of some open set V=U. Then the subdifferential of F is locally
at the points of V. -

A



This result was obtained
mappings. We remind that it F
unded from below set in ¥
F: X -+ Y has the subdiiiei
Further we'll som
logy in X, ¥ or L ‘
topolc)g_\'. genemled b
a conjugate (Banach) th
and Y.=Es.In this case w* =
When Y has a locally convex
a topology s, in the following wi
and V belongs to the local basis :
basis at 0¢L. A net {AJ=L converge
x€X. In addition, if r=w(¥, Z) fc
topology s: coincides with the w
XRZ L(X, Y)*, ie. se=w(L(X, ¥)
duct of X and Z (see [5, p. 227]). " S
The set Zc=Y* is called ordering, if
all z€ZN Y. Whenever Y is a norm ‘
space Zc—Y* is said to be norming i
z¢Z, ||z||=1 such that (y,2)>1. o
Proposition 1.3 Let X be a Ba
Z be an ordering subset of Y and t
maximal GMM T: X—L(X, Y) is a clo
Proof. Suppose that (xa, Ag) iS @
lim (o, Aa)=(%g, Ao). This means that 1| X,
for every x¢X and z¢Z. Let (x,ﬂ;_,
+Auxa=0. It is obvious that || Axe—4 Xo |
tion, for every z¢ Z we have |(Aqx—AgXo
2 1= Au |- | Xa—o | - | Z I (Autto—Aox
that the set {A,: a>a,} is bounded (Th
(x—xa)=(A—A;) (x—x,)=0 as the ¢
mality of T, it follows that (x,, Ap)€GT
Now we need the following defin
Y with y, =y, let [yy, ol ={YVEX:Y
are called intervals. i8.
Proposition 1.4, Let X be a Ban
normed lattice, Z be an ordering and normi
cally convex topology in Y and w(Y,Z)=
tions are equivaleut: ”
(i) Y has t-compact intervals.
(i) Every maximal GMM T: \
(iii) Every continuous sublinear m
port set. g
Proof. We'll prove that (i) imp
T: X—L and x, x€X e useiE
[A,x, Ayx] for some A;€ T(xo+ X
terval in Y is t-compact, then
(¥, 1) with respect to the pointwise con

k.
s
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coincides in L(X, ¥)=(¥,©)* with the topology S.
w(Y,Z)=t=n, it is not difficult to see that evm )
cubset of L(X, Y) is t-closed in (¥, )% Now Tx, is s
1.3 and bounded by Theorem 1.1. Therefore Tx;, IS s
It is obvious that (i) implies (iii). It remains to s
It suffices to prove that for some y, the interval [—th
define P: X— ¥ by Px=|x||¥. It is clear that {Axo
for some x, €., | xo|=1. The inclusion {Ax,: A€dx0)}S[=Vo
sequence of the Hahn-Banach extension thporem for order ¢
lattice (see [1, p. 202]). The Proposition 1.4 is p_roved. .
Every conjugate lattice ¥ has w*-compact intervals and hence ey
mal GMM 7: X - /[(X,Y) has sgs-compact images. The Baq
with w-compact intervals possesses a number of .equivalent prc:j;;_ertl S
are discribed in [3]. loffe and Levin [4] proved that the subdiffere
every continuous convex mapping F: X—Y has S,-compact images
w-compact intervals. We get this result as a corollary of Propos
T'he Banach lattices R”, ¢,, /(1 =p=co) have n-compact intervals.
We shall recall that the multivalued mapping 7 : (X, n)—(L, 8) is said
he upper semicontinuous — s-u. s. ¢. (resp. lower semicontinuous — s-1. s. c.
the point x, € X" if for every s-open UcL, Tx,=U (resp. Txo NUE=@) ti
exists 6>0 such that 7TxcU (resp. Tx U==@) for all x€B(xg 8)- |
derov [7,8] proved that every maximal monotone mapping Jr Sl
upper semicontinuous from X to X* endowed with the weak* topolo
milar result is also valid for GMM. Fhahe
Proposition 1.5. Suppose that X is a Banach space, Y is a normed
latlice, T" is a maximal GMM, Z is an ordering subset of ¥ and W(Y W) e
=t=n. [f for some x,¢X there exists a neighbourhood V of x, suck that
(V) is relativity s.-compact, then T is S.-it.S.c. at Xk g e,
Proof. Let us suppose the contrary : there exist asropenset Uc L, Tx,
and a convergent net {x,}=.X, || xa—x,|[—0, for which Aq.€ Tx./U. When
is large enough, x. € 1V and there exists a convergent (in (L, s)) subnet Ay —
Since the graph of 7' is closed (Proposition 1.3), A,€ T, On the other han
the set LU is s.-closed and hence A,¢ LXU. This contradiction proves
Proposition 1.5, S
Corollary 16. If X is a Banach space, Y is a conjugate lattice, then
every maximal GMM T: X—L is sy-.S.c. at every point of X. d ,.‘. aen
Proof. Since the closed unit ball in L(X, Y) is syw~compact and Tig
locally bounded, we can apply Proposition 1.5. v e
Corollary 1.7. Let X be a Banack space, Y be an order com’ﬂf}
normed lattice and P: X—Y be a continuous sublinear mapping. Then if Y
has w-compact (resp. n-compact) intervals, the subdifferential oj;
Swll-S.C. (resp. s,-u.s.c.) at every point of X. ST
Proof. This is imediate from Proposition 1.5 because dp(x)=dp(0) fi
all x€X and dy(0) is s,-compact (resp. s,-compact) by Proposition 1.4,
2. Single-valuedness of Generalized Monotone Mappings. Rec
the convex mapping F: X—V is called Gateaux differentiable at x,¢.

e

Flony; )= int {0 -

cxists for all #¢.X and Flx,;.) is a linear mapping. WhEl‘f“ﬁy'lSﬁ



‘s [ .

complete lattice, F is Gateaux
is single-valued at x, (see [1,p. 2

Proposition 2.1. Suppc
lattice, Z is a total Sﬂb“‘r 1

(a) T is single-valued at
(zoT) are single-valued at x,

(b) If T Is Selsc. at
point. b33
Proof. It is clear that (a)

A A€ Tx, A=A, Choose x€ X ||.
<(Agx, 2). The set U={A€L: {(Ax,
There exists 8>0 such that Tx'\ U
+8/2.x and by the monotonicity o

v
&

2¢Y. and (A'x, 2)=(A,x, 2), hence A'¢U. °

proof. CRR &
In the case Y=R, this result is cont
Theorem 22. Let X be a Bana

that there exists Z=Y™* for which %ﬂ,

If every monotone mapping 0: X—X* i
dense G subset of X, then every GM!
the points of a dense Gs Set in X.

_ : Rk
Proof. Let Z, be a countable “.
2¢Z, the monotone mapping (2o 7): X~
which is a dense Gs subset of X. It follo
is also dense Gs. Since Z, is total the GM
rem 2.2 is proved. Pk
A Banach space X is called an Aspmﬁﬁ
continuous convex real-valued function on an

dy

(Gateaux) differentiable in a dense G; subset :

requirements of Theorem 2.2 are fulfilled
rem 3.2). Kenderov [11] proved that if
norm (i. e. if X, xg€ X, || % [|=| %3]l and

then every monotone mapping 0: X—X* |
In particular, Theorem 2.2 holds for every

such space has an equivalent dual strictly

theorem is valid if ¥ is separable or ¥ i

is separable.

Theorem 23. Let X be a weak A

complete normed lattice that there exists
separable and total. Then every contin
Gdteaus differentiable at the points of
Proof. Take the proof of Theorem
We note that there is a continuous c
Gateaux differentiable at any point of
and a continuous convex function f: .
rentiable on X (Phelps [20]).
3. Single-valuedness and Norm
neralized Monotone Mappings. The s
Frechet differentiable at the point x,€ X

"
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Theorem 31. Let X be a no
F: XY b: a continuous convex maf
that ddx)+ () whenever Lx-.z§<l.
xq Uf and onl l/ the OM

Prool .
N<e<e, c'll find 6>0 !l!tll ll!ll l’)‘of

every A€d lx,,-¢-h). There exists such |
creny At o) whenever | b 15ali<n: Nowols
that for any z(le 2z < we have iy
Nﬂh'l'l)-” -— | '

12|

We choose 6-=L/8 and fix h¢ X, | k| <8 and A(d
hat 'A—A,| <e. For that purpose we take ’6
nequalities hold : o

P+ W)= Fro=Adh,
Flxg+h+ g)—Flx+ "

Hence Ag=Flx,+h+ g)—Flxg+h)+Fxo—Fxy
(A—A)g=Flx,+k+8)— —Fx,—Afh+g). Let us denote |
the last mequalm by & g). If we replace g by — & we D ¥

Thus
— N —g)=(A— Ao)gsm

Since Mg)=0 and H—g)=0, (A— Ag)glﬁ"(g)\/“-
' g) /dx—g) Now we have

H—L) n _‘ul{_i_f___ g ,H
Zg—h /‘—3 "Weg—All g’-‘-lf7 g-ll <T T

It follows that

(A-Agll__ | ¥e)ll, i N=8)_ &
A =l =kl Y Te=AF = hence
This shows that || A—As||<E. 5 2
et now the subdifferential of F be sing‘le-valuad :
point x, i. & dfx)={A, } and for any e<0 there
A—A,|<e whenever |[Z]|< 8and Ag ,fx,-l-lt).l’
/*(x,,v/z—-—g) —FAx,+h)=Ag and hence =
Thus xF(x,,—r-/z) Fxo—-AOIzS(A—Ao)It and ||
— Ak | <1 A=Al || £|l. The last inequality slmm
rentiable at x, The proof is finished. »

As it was already mentioned, the Banach ce A
space if every continuous convex function f: X->R
at the points of some dence U subset of lts da_‘
following well known theorem. k

Theorem 3.2. Any one of tlzefollow g
space X implies all the others: i3 2




(b) Every
{o-norm “

() rl“‘ ubs
(d) X' Iu'u /n ﬂﬂ
The proo

ed

Kenderov {10;
Mhe equivalence b:"::(‘)

i-urther we'll give some conditions un
i single-valued and n-usc, OI de!
this problem Is vety
is not Frechet differ ﬂ
(a)), thus the GMM 0d,: R~ ﬂ
terval (Theorem 3.1). Similarly
in a Hilbert lattice ¥ with Vm b“ fi
point of ¥ (Example 4.3). First we
finite dimensional space, and
the spaces Y and L(X,Y) and or) the
lued and n-usc. on a dense h, -
corollary of a Kenderov's theorem lﬁ. cotem
Theorem 3.3 (Kenderov). L#x
space and W be a norming g
is an upper semicontinuous (mi ed) m
and convex images. If . 1
(a) W=V or :
(b) V is a conjugate space, k s,;
space
then there exists a dense Gy subset G h

following *continuity property” (. p,)ll
©.p) for every &>0 there is 5>0 su
: {'u ¢Tx, vV eTx"}=¢ wheuem‘
Proposition 34. Let X be a ni
and T be a GMM. Then T has (c.p.)
valued and n-u.s.c. at x,
Proof. f T is single-valuedmd
{o see that T has (c.p.) at x, Let M'T
£>0, There exists 8>0 such that
inf{ll A’—A"1|: A€]
whenever x', x” ¢ B(x, 8). Well prm
enough for smgle-valuednm and n-upper
Let x,, x,€B(x,8), AkTxy, Age_
we have x' = x1+te(B(xo,£)
A —A" |<e/2. Using the monotor
(A2 —A")e=0. Therefore (A, 2) =
of e we obtain (Al-—A,)ez(A;-—

are such that | A;-—-Az
(A,—AJ)e, y*) |<e[2. Q‘m

-ﬁmﬁ--f;- ko

It follows that [(Al—Az)ell<e Blld
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For usual monotone mappings |
Besides the theorem of Kender
nowski (see [3]), Proposition 3.4
Theorem 3.5. If Y is an order cony
lowing assertions are equivalent,
(i) ¥ has w-compat intervals.
(ii) Foery GMM T: R—=L(R. Y) is §
points of some dense Gs subset of R. o
(iii) Fvery convex mapping F: R—Y is
points of a dense Gy subset of R. Folw g
Proofl. We note that the space L(R, ') is i
let T: R—Y be a GMM and T: R—+Y be a n
TreTr for every reR. If we take r,€R, ¥;€ f’rf,_..._“
7 is expressed in y,=y, whenever ri=r,. Let r€R
Vv, € T(r,—38), ¥2€ T(ry+38), then (V)<= y.. ¥s]. Propos
is w-us.c. at r, T has w-compact (Proposition 1.4) i
by Theorem 3.3 (a) and Proposition 3.4 7 is single-v.
the points of some dense Gs subset of R. T has ~
I'r— T r whenever 7r contains one point. e
(i) implies (iii). The convex mapping F: R—Y is continuc
R because it is order bounded (see Valadier [22]).Sin
plete lattice, d{x)+@ for every x¢X, and we canap
(iii) implies (i). Losanowski proved that } has @w-comp.
space m (of all bounded sequences) does not embed into .
is a convex mapping F: R—m which is not Frechet diffe
point of the interval (0,1)=R (see Example (4.2). Thus the
Theorem 3.5 are proved. e
We mention that all sublinear mappings P: R—Y are
tiable at every point of R/{0}, provided ¥ is a normed lai
true even if R is replaced by R? (see Example (4.2).
Theorem 3.6. If Y is an order complete Banach
then the following assertions are equivalent: R
(i) ¥V has w-compact intervals. ' ¥4
(ii) Every GMM T: RF—L(R?, Y) is single-valued and
points of a dense Gs subset of R’ £
(iii) Ewvery convex mapping F: RP—Y is Frechet d
points of some dense Gs subset of RP. 5
(iv) Every sublinear mapping P: RP—=Y is Frechet
noints of a dense Gs subset of R’. : P
Proof. It is not difficult to show that 7(V/) is
bounded set V=R”. As well as in the proof of Theore:
implies (ii). It is obvious that (ii) implies (iii) and (iii)
1.2 (b) enables us to get (iv) implies (i). A
Thus, if X=/R” we give the necessary and sufficient ¢
7: X—L(X,Y) to be single-valued and n-us.c. at the
set in X. An analogous theorem can be obtained from t
Asplund spaces (see Theorem 3.2). biler
Theorem 3.7. Each of the following assertions ab
implies all the others. ot o o

~

i
e

Ry




GENERALIZED

i) X is an Asplund s
&.’) Every GMM T: =
points of some dense @
(iii) Every continuous cons
tiable at the points of a dense |
Proof."Let Fx=(f(x)
note that F is a convex m :ﬁ
is Frechet differentiable :
Since L(X, R?)=(X*), T=(T,
tone mapping for every i=1,
single-valued and n-usc. at x
T, i=1 80 P A
theorem is a corollary of Theorem
Now we give some results
Theorem 38. Let X be a Ban
L(X, Y)=K(X, YY™K(X, Y) is the sp
from X into Y). Then every GMM
n-u.s.c. at the points of a dense G :
Proof. Suppose ¥~ E* Since L(X,
the GMM T: X —K(X, ¥) is Kls- 3
Corollary 1.6. According to the ®
the GMM T is single-valued and n-u.sm
Corollary 3.9. If the condltim_..
tinuous convex mapping F: X —Y 1
all x¢ X is Frechet differentiable at
Proof. Apply Theorem 3.8. dp
jugate lattice is order complete (see [%,
Corollary 3.10. Suppose X is a B¢
tice with n-compact intervals and L(X
bounded convex mapping F: X—¥ l!‘l
of a dense Gz subset of X. 5
Proof. Since ¥ has n-compact inte
d{x)=K(X, Y) and Corollary 3.9 can be
We note that if X and Y are reflexiv
tion property (for the definition see [5,
(Feder, Saphar [6]). In particular, Corc
1<p<oo l<q<oo
Theorem 3.11. Let X be a Bana
tice such that L(X,Y) has the Radon-N
T: X—L(X,Y) is single-valued aruf‘
subset of X. %
Proof. Since Y=E* LX, ¥)= (
kodym property, then X®E is an 1
position 3.4 show that 7 is smgle-valﬂ
Corollary 3.12. Suppose X is a Ban
tice such that L(X, Y) has the Radon-Nikodym
nuous convex mapping F: X —Y is Frechet
of a dense Gs subset of X. !
Proof. This follows immediate f




L(X, ‘has
Theorem 3.11 and Cor ‘
X=L, Y=lp ﬁ p<
f Exam ples. '
bounded functfone;
Banach lattice with respec
positive cone Yi={ye¥: y(t)
in the following way: (F7) ()~
convex mapping. It is not di U
ferential of F has the form: 5

(b) Let now V=L.[0,1]. ¥ is again an or
with respect to the usual norm and order. The s:
and the form of the subdifferentials, given in

fiable at any point of the interval ?0 ,1). Indeed, w
<1, /4=8/2 and d(r,)={y}, we have| F(r,+4)—Fr,
—|ro—t|—hy(®)|: t€[0, 1]}=>ess sup {||ry+h—E]-
+8/4)} =esssup {2(ry+h—1t): t€(ry ry+0/D}=h.
(c) Let us note that we can consider F as a
space of all continuous functions C[0,1]. Relative to t
C[0,1] is a Banach lattice, but it is not order c
has empty subdifferentials at every point of (0,1)(see
Example 4.2, (a) Let m be a space of all bound
terms. In the wusual norm and order, m is an order cor
Suppose that Q= {ql, Jor -+« 3 Qs o ==y ISTEEHC S SETING RTINS
(0, 1)¢ R. The mapping F: R— m is defined by i RCTE

Fr=(r—au | [r=gaho- s |7=galoed

As in Example 4.1 we can prove that F is not Gateau.
points of Q and F is not Frechet differentiable at any po
(b) Let us define P: R?—m in a such way:

P(r, s)=(|r—sq, |, | r—sga]5- lr—sg,,l |

P is a sublinear mappmg and it is not Frechet differen
the open nonempty set G={(r, s)€ R?: 1/2<r/s<1 and -

Example 4.3. Let /,(1=p<<o) (resp. ¢,) be the sp
x=(Xy, Xg ... X ...) of real numbers for which
(resp. x,— 0 and ixl =sup, | x, ). With respect t
order /, and ¢, are order complete Banach lattices.
the qpace ¢, or some of the spaces /,. The mapp;
Px=|x|, where |x|=(]xql] [} ...,[x,,[,... S Riay



mapping- It is not difficult to sk
ll.patf,:o whenever i==j

trix, defined by the ling

at the points of the set

subset of X and if x¢
2.....P is nowhere Frechel
0,...)€X, then ||A,|l— 0 but

It is interesting to note that dp is

but @, is not n-us.c. at any point
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