compact intervals, and (ii) X has norm o
differentiable at the points of mm
h

space of all continuous linear operators from E to Xe L K(E
of compact linear operators. We recall that F: E — X mm'

F(Ae, +(1 — A)e,) < AFe, +(1 —i h)
whenever ey, € € E and 0 < A < 1. F is called ordér-Boﬁh,

A, WS
In this paper we study the problem of generic Fréchet differehtia

operators defined in E; i.e., we give conditions under which every ord
convex operator F is Fréchet differentiable at the points of some dense G
E. In the case when F is a real-valued convex function (i.e., X = R), this.
has been thoroughly studied. Banach spaces E for which every continuous
real-valued function F: E — R is Fréchet differentiable at the points of
subset of E are called Asplund spaces. These spaces have been chracterized
different ways (see Namioka and Phelps [14], Phelps [15], Stegal [16], Kender

Radon-Nikodym property are the following: the space E* and the
have the Radon-Nikodym property, and L(E, X) = K(E, X ) (An
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assumptions in the second result,

norm compact intervals, F is order-bounc
bidual space). Different types of conditions, i
for the positive cone of X, were obtained by Bor
every continuous convex operator from an Asplund

differentiable. _ : .
It should be noted here that the case of arbitrary E, X,

There is a continuous convex operator P: [, = [,, where ‘
space, which is nowhere Fréchet differentiable in /, (see [12, E: um
that we must impose some kind of restrictions on the operator F
positive results. Order boundedness, first used by Valadier [17], t
[13], is the most natural restriction and it will also be used here.
Furthermore, we shall employ Kenderov’s method of multivalued
mappings (see [9-11]), and for this purpose we introduce some more defin
We say that the multivalued mapping 7: E — L(E, X)is a generalized' :
mapping (briefly g.m.m.) if (A4, — 4,)(e, — e,) = 0 for every A4, € Te,
i = 1,2. The subdifferential of a convex operator F: E — X, i.e., the multi
mapping

dr:eg—=> {4 € L(E, X): A(e — e;) < Fe — Feyforeverye € E }

is a g.m.m. The g.m.m. is said to be maximal if its graph is not properly contain
the graph of any other gm.m. By Zorn’s lemma the graph of every g.m
contained in the graph of some maximal g.m.m. In what follows we suppose
Te # & foralle € E.

The multivalued mapping 7: E — L is said to be upper semicontinuous a A_
point ¢, &€ E if for every open set U D Te, there exists a neighbourhood ¥ / O
such that 7e c U for alle € W. s

e

1. Preliminary results. It is known [12, Theorem 4] that the continuous co
operator F: E — X is Fréchet differentiable at e € E if and only if the gmm5 e
single-valued and norm-to-norm upper semicontinuous at this point. This

together with a corollary of a topological result of Christensen [5, Theorem oy ;
us the desired result. ¥

L
Jik 408

THEOREM 1.1 (CHRISTENSEN). Let E be a Banach space, Z a normed spac
E — Z a norm-to-weak upper semicontinuous multivalued mapping with nd’ng pi
weak compact images. Then there exists a dense G; subset of E at edchp’
which the following condition is fulfilled.: ] e

(%) There e).cisttv a point z, € Te such that for every ¢ > 0 ther
8> 0 with inf{||z — 2ol z € Te} < & whenever ||e — eoll

PROPOSITION 1.2. Let E be a Banach space, X a normed Iaitfce,- ’.

a 8.m.m. Then T has property (%) at the point ey € E iff
1Orm-1o-norm upper semicontinuous at e,



IS " is locally weak-order bounded if for every e, € PBr
100d ¥ of e, (with respect to the norm topology) such that the set
=U(Te: e V') is weak-order bounded. This means that the sets {Ae:

;- Ade ﬂ'?)) are order bounded for every e € E.

PROPOSITION 1.3 [12]. Let E be a Banach space, X a Banach lattice with weak
compact intervals, and T: (E, | - |) - (L(E, X), o(L(E, X), E® X*)) a locally
weak-order bounded and maximal gm.m. Then T is upper semicontinuous and
compact valued at all points of E.

REMARK. We recall that the tensor product £ ® X*
subspace of L(E, X)*, Every point u € E ® x*
tinuous linear functional on /.
forall 4 € L(E, X )

PROOF. Since X has weak compact intervals, every weak-order bounded subset of
L(E, X) is relatively compact in the topology o( L(E, X). E ® X*). Hence, for
every e, € E there is an open set V' S e, such that T(V ) is relatively compact,
because 7 is locally weak-order bounded. It is not difficult 0 prove that such a
mapping is upper semicontinuous and compact valued, provided it has closed graph

(see [13, Proposition L.5]). That every maximal g.m.m. has a closed graph can be
seen from the following lemma

can be considered as a
, u=1Xr e, ® x*, defines a con-
(E, X) in the following way: (A, uy = XX_ (Ae,, xr)




‘ : ‘R X .
 [8)). Theorem 1.1 and Proposition 1.2 can be applied.

EONGITARr 20 If E and X are a5 in Theorem 21 ond - F o 3 e

order-bounded convex operator with 0. E > K(E, X), then F is generic Fréchet
differentiable.

PROOF. This is immediate from Theorem 2.1, because the subdifferential of an
order-bounded convex operator is a locally weak-order bounded g.m.m., and single-

valuedness and norm-to-norm upper semicontinuity of 3, are equivalent to Fréchet
differentiability of F.

A convex operator P: E — X is said to be sublinear if P(Ae) = A Pe for all ec E
and A € R, A > 0. Since the subdifferen

tial of every sublinear operator is a locally
Wweak-order bounded g.m.m., provided X has weak compact intervals, we obtain the
following:

CororLary 23, Suppose E
sublinear operator with support s
is generic Fréchet differentiable.

and X are as in Theorem 2.1 and P:E> Xisa

et (i.e., 3,(0)) consisting of compact operators. Then P




v 1 g ') v“w-y““,l
1 X and X * have weak compact int
A dNd 2 s

y ot ¢ f 1ho tone )
] toc the comni ellON O] [ne Lensor
\:,‘; * (;"(;‘)‘?(‘v?’{‘{."iﬂ‘\' LNne lL.:".,',,f,(vL/ HeLLor 1)

mpaci
en T is single-

'*»VPRO'OF. Lemma 3.1 shows that Proposition 1.3 can be applied. Furthermore, the
arguments are the same as in the proof of Theorem 2.1.

If X is an order complete Banach lattice, it is interesting to note that the

requirement “X and X* have weak compact intervals” is equivalent to “X is an
Asplund space” (Buchvalov, Veksler, and Losanowski (4]).

CorOLLARY 3.3. If

E and X are as in Theorem 32 and F:- E — X is an
order-bounded convex operator, then F is generic Fréchet differentiable.

PROOF. It is a direct consequence of Theorem 3.2.

4. Examples. Finally, we give some

application of the results, First, we not
generally

compact

simple examples which outline the field of
e that the spaces K(E, X) and B(E, X) are
different. It is easy to see that B(E, X)c K(E, X) provided X has norm
intervals. The linear operator A4: [, — [ » 1 <p< ), defined by
A(E,, 52,...,£k,...) =510 S &Mk, ..), where (e it T

Is compact but not order bounded. An example of a linear Operator which belongs to
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B(E, X)\ K(E, X) is the natural embedding /. L,[0,1]

Second, we note that Corollary 3.3 gives us some
Banach lattices Y such that

and X=Lq(l<q<oo).ln

intervals of X are not compact. Conversely, if E is a reflexive space and x — Xk
Corollary 2.4 works ( X has norm compact intervals), but Corollary 3.3 does not (X
1$ not Asplund). In both cases no other known results can be applied.

REMARK. Instead of Theorem 1.1 we can use a theorem of Kenderoy [9, Theorem

this case Corollary 2.4 does

2.1]. For g.m.m. both theorems give us the same results.
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