g%s cce chl0fm Page 373 Thursday,M ay 9,2002 534 PM

Chapter

Pointers

CHAPTER GOALS

To learn how to declare, initialize, and use pointers
To become familiar with dynamic memory allocation and deallocation

To use pointers in common programming situations that involve optional and
shared objects

To avoid the common errors of dangling pointers and memory leaks
To understand the relationship between arrays and pointers

To be able to convert between string objects and character pointers

n object variable confains an important concept in object-oriented
object, but a pointer specifies where an programming.
object is located. In C++, pointers are In C++, there is a deep relationship

important for several reasons. Pointers between pointers and arrays. You will see
can refer to objects that are dynamically in this chapter how this relationship
allocated whenever they are needed. explains a number of special properties
Pointers can be used for shared accessto and limitations of arrays. Finally, you
objects. Furthermore, as you will see in ~ will see how to convert between string
Chapter 11, pointers are necessary for objects and char* pointers, which is nec-
implementing polymorphism, an essary when interfacing with legacy code.

- 4@

g%% cce chl0fm Page 374 Thursday,M ay 9,2002 534 PM

@ Pointers

CHAPTER CONTENTS

10.1 Pointers and Memory Allocation 10.4 Arrays and Pointers

10.2 Deallocating Dynamic Memory

10.5 Pointers to Character Strings

10.3 Common Uses for Pointers

The C++ run-time system can create new objects for us. When we ask for a
new Employee

then a memory allocator finds a storage location for a new employee object. The memory
allocator keeps a large storage area, called the /eap, for that purpose. The heap is a very
flexible pool for memory. It can hold values of any type. You can equally ask for

new Time
new Product

See Syntax 10.1.
When you allocate a new heap object, the memory allocator tells you where the
object is located, by giving you the object’s memory address. 'To manipulate memory

new z‘ype_name
new zj/fe_name(expressianl, expressionz, e e, expresszann)

new Time
new Employee("Lin, Lisa", 68000)

Allocate and construct a value on the heap and return a pointer to the value.

4~ ~¢

g%% cce chl0fm Page 375 Thursday,M ay 9,2002 534 PM

Pointers and Memory Allocation @

type_name* variable_name;
type_name* variable_name = expression;

Employee* boss;
Product* p = new Product;

Define a new pointer variable, and optionally supply an initial value.

addresses, you need to learn about a new C++ data type: the pointer. A pointer to an
employee record,

Employee* boss;

contains the location or memory address for an employee object. A pointer to a time
object,

Time* deadline;

stores the memory address for a time object. See Syntax 10.2.

The types Employee* and Time* denote pointers to employee and time objects. The
boss and dead1ine variables of type Employee* and Time* store the locations or memory
addresses of employee and time objects. They cannot store actual employee objects or
time objects, however (see Figure 1).

When you create a new object on the heap, you usually want to initialize it. You can
supply construction parameters, using the familiar syntax.

Employee* boss = new Employee('Lin, Lisa", 68000);

When you have a pointer to a value, you often want to access the value to which it
points. That action—to go from the pointer to the value—is called dereferencing. In C++,

boss = | ——f—~| Employee
deadline = :|—> Time

Pointers and the Objects to Which They Point

- 4@

g%% cce chl0fm Page 376 Thursday,M ay 9,2002 534 PM

375

Pointers

the * operator is used to indicate the value associated with a pointer. For example, if boss
is an EmpTloyee*, then *boss is an Employee value:

Employee* boss = . .3
raise_salary(, 10);

Suppose you want to find out the name of the employee to which boss points:

Employee* boss = -
string name = *boss.get_name(); // Error

Unfortunately, that is a syntax error. The dot operator has a higher precedence than the *
operator. That is, the compiler thinks that you mean

string name = *(boss.get_name()); // Error

However, boss is a pointer, not an object. You can't apply the dot (.) operator to a
pointer, and the compiler reports an error. Instead, you must make it clear that you first
want to apply the * operator, then the dot:

string name = (*boss).get_name(); // OK

Because this is such a common situation, the designers of C++ supply an operator to
abbreviate the “dereference and access member” operation. That operator is written ->
and usually pronounced as “arrow”.

string name = boss->get_name(); // OK

Dereferencing of pointers and accessing members through pointers are summarized in
Syntax 10.3.

There is one special value, NULL, that can be used to indicate a pointer that doesn't
point anywhere. Instead of leaving pointer variables uninitialized, you should always set
pointer variables to NULL when you define them.

Employee* boss = NULL; // will set later

1.'f.(|.ooss I= NULL) name = boss->get_name(); // OK

You cannot dereference the NULL pointer. That is, calling *boss or boss->get_name() is
an error as long as boss is NULL.

Employee* boss = NULL;
string name = boss->get_name(); // NO!! Program will crash

The purpose of a NULL pointer is to test that it doesn’t point to any valid object.

*pointer_expression
pointer_expression->class_member

*boss
boss->set_salary(70000)

Access the object to which a pointer points.

ﬁ-%

g%% cce chl0fm Page 377 Thursday,M ay 9,2002 534 PM

Pointers and Memory Allocation @

X

A pointer is a memory address—a number that tells where a value is located in memory. You
can only carry out a small number of operations on a pointer:

assign it to a pointer variable
compare it with another pointer or the special value NULL
dereference it to access the value to which it points
However, it is a common error to confuse the pointer with the value to which it points:

Employee* boss = . . .;
raise_salary(boss, 10); // ERROR

Remember that the pointer boss only describes where the employee object is. To actually
refer to the employee object, use *boss:

raise_salary(*boss, 10); // OK

It is legal in C++ to define multiple variables together, like this:
inti =0, j=1;

This style does no# work with pointers:
Employee* p, q;

For historical reasons, the * associates only with the first variable. That is, p is a Employee*
pointer, and q is an Employee object. The remedy is to define each pointer variable separately:

Employee* p;
Employee* q;

You will see some programmers group the * with the variable:
Employee *p, *q;

While it is a legal declaration, don’t use that style. It makes it harder to tell that p and q are
variables of type Employee*.

ﬁ-%

g%% cce chl0fm Page 378 Thursday,M ay 9,2002 534 PM

372
ﬁi

Pointers

Each member function has a special parameter variable, called this, which is a pointer to the
implicit parameter. For example, consider the Product: :is_better_than function of Chap-
ter 8. If you call

next.is_better_than(best)

then the this pointer has type Product* and points to the next object.
You can use the this pointer inside the definition of a method. For example,

bool Product::is_better_than(Product b)

{

if (b.price == 0) return false;

if (this->price == 0) return true;

return this->score / this->price > b.score / b.price;
}

Here, the expression this->price refers to the price member of the object to which this
points, that is, the price member of the implicit parameter, or next.price. The this
pointer is not necessary, however, since by convention the expression price also refers to the
field of the implicit parameter. Nevertheless, some programmers like to use the this pointer
to make it explicit that price is a member and not a variable.

Note that this is a pointer whereas b is an object. Therefore, we access the price mem-
ber of the implicit parameter as this->price, but for the explicit parameter we use b.price.

Very occasionally, a member function needs to pass the implicit parameter in its entirety
to another function. Since this is a pointer to the implicit parameter, *this is the actual
implicit parameter. For example, suppose someone defined a function

void debug_print(string message, Product p)
Then the code for the is_better_than function might start out with these statements:

debug_print("Implicit parameter:",)
debug_print("Explicit parameter:", b);

When you make a variable of type Employee, the memory for the employee object is allo-
cated on the run-time stack. This memory automatically goes away when the program
leaves the block in which the variable is allocated:

void fQO
{

Employee harry; // memory for employee allocated on the stack

Y/ / r.ne.mory for employee automatically reclaimed

Values that are allocated on the heap do not follow this automatic allocation mechanism.

ﬁ-%

g%% cce chl0fm Page 379 Thursday,M ay 9,2002 534 PM

Deallocating Dynamic Memory @

You allocate values on the heap with new, and you must reclaim them using the delete
operator:

void g
{
Employee* boss;
boss = new Employee(. . .);
// memory for employee allocated on the heap

delete boss; // memory for employee manually reclaimed

}

Actually, the foregoing example is a little more complex than that. There are two alloca-
tions: one on the stack and one on the heap. The variable boss is allocated on the stack.
It is of type Employee*; that is, boss can hold the address of an employee object. Defin-
ing the pointer variable does not yet create an Employee object. The next line of code
allocates an Employee object on the heap and stores its address in the pointer variable.

At the end of the block, the storage space for the variable boss on the stack is auto-
matically reclaimed. Reclaiming the pointer variable does not automatically reclaim the
object to which it points. The memory address is merely forgotten. (That can be a prob-
lem—see Common Error 10.4). Therefore, you must manually delete the memory block
holding the object.

Note that the pointer variable on the stack has a name, namely boss. But the
employee object, allocated on the heap with new Employee, has no name! It can be
reached only through the boss pointer. Values on the stack always have names; heap val-
ues do not.

When a pointer variable is first defined, it contains a random address. Using that
random address is an error. In practice, your program will likely crash or mysteriously
misbehave if you use an uninitialized pointer:

Employee* boss;
string name = boss->get_name(); // NO!! boss contains a random address

You must always initialize a pointer so that it points to an actual value before you can use
it:

Employee* boss = new Employee("Lin, Lisa", 68000);
string name = boss->get_name(); // OK

After you delete the value attached to a pointer, you can no longer use that address! The
storage space may already be reassigned to another value.

delete boss;
string name = boss->get_name(); // NO! boss points to a deleted element

delete pointer_expression;

delete boss;

Deallocate a value that is stored on the heap and allow the memory to be reallocated.

ﬁ-%

@

g%% cce chl0fm Page 380 Thursday,M ay 9,2002 534 PM

3904
X

Pointers

The most common pointer error is to use a pointer that has not been initialized, or that has
already been deleted. Such a pointer is called a dangling pointer, because it does point some-
where, just not to a valid object. You can create real damage by writing to the location to
which it points. Even reading from the location can crash your program.

An uninitialized pointer has a good chance of pointing to an address that your program
doesn’t own. On most operating systems, attempting to access such a location causes a pro-
cessor error, and the operating system shuts down the program. You may have seen that hap-
pen to other programs—a dialog with a bomb icon or a message such as “general protection
fault” or “segmentation fault” comes up, and the program is terminated.

If a dangling pointer points to a valid address inside your program, then writing to it will
damage some part of your program. You will change the value of one of your variables, or per-
haps damage the control structures of the heap so that after several calls to new something
crazy happens.

When your program crashes and you restart it, the problem may not reappear, or it may
manifest itself in different ways because the random pointer is now initialized with a different
random address. Programming with pointers requires iron discipline, because you can create
true damage with dangling pointers.

Always initialize pointer variables. If you can't initialize them with the return value of new,
then set them to NULL.

Newer use a pointer that has been deleted. Some people immediately set every pointer to
NULL after deleting it. That is certainly helpful:

delete first;
first = NULL;

However, it is not a complete solution.
second = first;
delete first;
first = NULL;

You must still remember that second is now dangling. As you can see, you must carefully
keep track of all pointers and the corresponding heap objects to avoid dangling pointers.

The second most common pointer error is to allocate memory on the heap and never deallo-
cate it. A memory block that is never deallocated is called a memory leak.

If you allocate a few small blocks of memory and forget to deallocate them, this is not a
huge problem. When the program exits, all allocated memory is returned to the operating
system.

ﬁ-%

g%% cce chl0fm Page 381 Thursday,M ay 9,2002 534 PM

Common Uses for Pointers @

But if your program runs for a long time, or if it allocates lots of memory (perhaps in a
loop), then it can run out of memory. Memory exhaustion will cause your program to crash.
In extreme cases, the computer may freeze up if you exhausted all available memory. Avoid-
ing memory leaks is particularly important in programs that need to run for months or years,
without restarting.

Even if you write short-lived programs, you should make it a habit to avoid memory
leaks. Make sure that every call to the new operator has a corresponding call to the delete
operator.

The new operator returns the memory address of a value that is allocated on the heap. You can
also obtain the address of a local or global variable, by applying the address (&) operator. For

example,

Employee harry;
Employee* p = &harry;

See Figure 2. However, you should never delete an address that you obtained from the &
operator. Doing so would corrupt the heap, leading to errors in subsequent calls to new.

harry

Employee

The Address Operator p =

In the preceding sections, you have seen how to define pointer variables, and how to
make them point to dynamically allocated values. In this section, you will learn how
pointers can be useful for solving common programming problems.

In our first example, we will model a Department class that describes a department in
a company or university, such as the Shipping Department or the Computer Science
Department. In our model, a department has

a name of type string (such as "Shipping")

an gptional receptionist of type Employee

- 4@

g%% cce chl0fm Page 382 Thursday,M ay 9,2002 534 PM

3924

Pointers

We will use a pointer to model the fact that the receptionist is optional:

class Department

{
private:

string name;

Employee* receptionist;
};

If a particular department has a receptionist, then the pointer will be set to the address of
an employee object. Otherwise, the pointer will be the special value NULL. In the con-
structor, we set the value to NULL:

Department: :Department(String n)
{

name = n;
receptionist = NULL;

}
The set_receptionist function sets the pointer to the address of an employee object:

void Department::set_receptionist(Employee* r)

{
}

The print function prints either the name of the receptionist or the string "None".

receptionist = r;

void Department::print() const

{

cout << "Name: << hame

<< "\nReceptionist: ";
if (receptionist == NULL)
cout << "None";
else
cout << receptionist->get_name()
cout << "\n";

}

Note the use of the -> operator when calling the get_name function. Since receptionist
is a pointer, and not an object, it would be an error to use the dot operator.

Here take advantage of pointers to model a relationship in which one object may
refer to 0 or 1 occurrences of another object. Without pointers, it would have been more
difficult and less efficient to express the optional nature of the employee object. You
might use a Boolean variable and an object, like this:

class Department // modeled without pointers

{

private:
string name;
boolean has_receptionist;
Employee receptionist;

1

Now those department objects that don’t have a receptionist still use up storage space for
an unused employee object. Clearly, pointers offer a better solution.

ﬁ-%

g%% cce chl0fm Page 383 Thursday,M ay 9,2002 534 PM

Common Uses for Pointers @

Another common use of pointers is sharing. Some departments may have a recep-
tionist and a secretary; in others, one person does double duty. Rather than duplicating
objects, we can use pointers to share the object (see Figure 3).

class Department

{

private:
string name;
Employee* receptionist;
Employee* secretary;

};

Sharing is particularly important when changes to the object need to be observed by all
users of the object. Consider, for example, the following code sequence:

Employee* tina = new Employee("Tester, Tina", 50000);
Department qc("Quality Control");
gc.set_receptionist(tina);

gc.set_secretary(tina);

tina->set_salary(55000);

Now there are three pointers to the employee object: tina and the receptionist and
secretary pointers in the gc object. When raising the salary, the new salary is set in the
shared object, and the changed salary is visible from all three pointers.

In contrast, we might have modeled the department with two employee objects, like
this:

class Department // modeled without pointers

{

private:
string name;
Employee receptionist;
Employee secretary;
};
Now consider the equivalent code:
Employee tina("Tester, Tina", 50000);
Department qc("Quality Control");
gc.set_receptionist(tina);

gc.set_secretary(tina);
tina.set_salary(55000);

receptionist

9

secretary

P EmpTloyee

name

I

. salary
Two Pointers Share an

Employee Object

ﬁ-%

gﬁ% cce chl0fm Page 384 Thursday,M ay 9,2002 534 PM

@ Pointers

tina = EmpToyee
Three Separate Employee Objects
name = value changed

)

salary = [55000 |-

receptionist

EmpToyee

name = [
salary = [50000]

secretary

EmpToyee

name = [
salary = [30000]

The department object contains two copies of the tina object. When raising the salary,
the copies are not affected (see Figure 4).

This example shows that pointers are very useful to model a “z : 1” relationship, in
which a number of different variables share the same object.

In Chapter 11, you will see another use of pointers, in which a pointer can refer to
objects of varying types. That phenomenon, called polymorphism, is an important part of
object-oriented programming,.

The following program gives a complete implementation of the Department class.
Note how the pointers are used to express optional and shared objects.

File department.cpp

#include <string>
#include <iostream>

using namespace std;

#include "ccc_empl.h"

A department in an organization.

*/

class Department

{

public:
Department(string n);
void set_receptionist(Employee* e);
void set_secretary(Employee* e);
void print() const;

private:

%W%

g%% cce chl0fm Page 385 Thursday,M ay 9,2002 534 PM

Common Uses for Pointers @

string name;
Employee* receptionist;
Employee* secretary;

};

/** . .
Constructs a department with a given name.
@param n the department name

*/

Department: :Department(string n)

{
name = n;
receptionist = NULL;
secretary = NULL;

}

Sets the receptionist for this department.
@param e the receptionist

:’:/

void Department::set_receptionist(Employee* e)

{
receptionist = e;

}

Sets the secretary for this department.
@param e the secretary

:’:/

void Department::set_secretary(Employee* e)

{
secretary = e;

}

Prints a description of this department.

:’:/

void Department::print() const

{
cout << "Name: " << name

<< "\nReceptionist: ";
if (receptionist == NULL)
cout << "None";
else
cout << receptionist->get_name() << " "
<< receptionist->get_salary();
cout << "\nSecretary: ";
if (secretary == NULL)
cout << "None";
else if (secretary == receptionist)
cout << "Same";
else
cout << secretary->get_name() << " "
<< secretary->get_salary(Q);
cout << "\n";
}

4~ ~¢

g%% cce chl0fm Page 386 Thursday,M ay 9,2002 534 PM

395

Pointers

int mainQ)
{
Department shipping("Shipping");
Department qc("Quality Control");
Employee* harry = new Employee("Hacker, Harry", 45000);
shipping.set_secretary(harry);
Employee* tina = new Employee("Tester, Tina", 50000);
gc.set_receptionist(tina);
gc.set_secretary(tina);
tina->set_salary(55000);
shipping.printQ;
gc.printQ);

return 0;

In Section 5.8, you saw how to use reference parameters in functions that modify variables. For
example, consider the function

void raise_salary(Employee& e, double by)

doubTle new_salary = e.get_salary() * (1 + by / 100);
e.set_salary(new_salary);

}
This function modifies the first parameter but not the second. That is, if you call the function as
raise_salary(harry, percent);

then the value of harry may change, but the value of percent is unaffected.
A reference is a pointer in disguise. The function receives two parameters: the address of
an Employee object and a copy of a double value. The function is logically equivalent to

void raise_salary(Employee” pe, double by)

doubTle new_salary = pe->get_salary() * (1 + by / 100);
pe->set_salary(new_salary);

}
The function call is equivalent to the call
raise_salary(&harry, percent);

This is an example of sharing: the pointer variable in the function modifies the original
object, and not a copy.

When you use references, the compiler automatically passes parameter addresses and
dereferences the pointer parameters in the function body. For that reason, references are more
convenient for the programmer than explicit pointers.

ﬁ-%

g%% cce chl0fm Page 387 Thursday,M ay 9,2002 534 PM

Arrays and Pointers @

There is an intimate connection between arrays and pointers in C++. Consider this dec-
laration of an array:

int a[10];
The value of a is a pointer to the starting element (see Figure 5).
int* p = a; // now p pointsto a[0]
You can dereference a by using the * operator: The statement
*a = 12;
has the same effect as the statement
af0] = 12;

Moreover, pointers into arrays support pointer arithmetic. You can add an integer offset to
the pointer to point at another array location. For example,

a+ 3

is a pointer to the array element with index 3. Dereferencing that pointer yields the ele-
ment a[3]. In fact, for any integer n, it is true that

a[n] == *(a + n)

This relationship is called the array/pointer duality law.
This law explains why all C++ arrays start with an index of zero. The pointer a (or
a + 0) points to the starting element of the array. That element must therefore be a[0].
The connection between arrays and pointers becomes even more important when
considering array parameters of functions. Consider the maximum function from Section

9.5.2.

a+ 3—»

Pointers into an Array

ﬁ-%

@

g%% cce chl0fm Page 388 Thursday,M ay 9,2002 534 PM

388 Pointers

double maximum(const double a[], int a_size)
{

if (a_size == 0) return 0;

doubTle highest = a[0];

int 1i;

for (i = 0; i < a_size; i++)

if (a[i] > highest)
highest = a[i];
return highest;

}
Call this function with a particular array:

double data[10];
. . // initialize data
double m = maximum(data, 10);

Note the value data that is passed to the maximum function. It is actually a pointer to the
starting element of the array. In other words, the maximum function could have equally
well been declared as

double maximum(, int a_size)

{

}

The const modifier indicates that the pointer a can only be used for reading, not for writing.
The parameter declaration of the first example

const double a[]

is merely another way of declaring a pointer parameter. The declaration gives the illusion
that an entire array is passed to the function, but in fact the function receives only the
starting address for the array.

It is essential that the function also knows where the array ends. The second parame-
ter a_size indicates the size of the array that starts at a.

q&

Now that you know that the first parameter of the maximum function is a pointer, you can
implement the function in a slightly different way. Rather than incrementing an integer
index, you can increment a pointer variable to visit all array elements in turn:

double maximum(const double* a, int a_size)
{

if (a_size == 0) return 0;

doubTle highest = *a;

const double* p = a + 1;

int count = a_size - 1;

while (count > 0)

{

- 4@

g%% cce chl0fm Page 389 Thursday,M ay 9,2002 534 PM

Arrays and Pointers @

if (*p > highest)
highest = *p;

p++;

count--;

}

return highest;

}
Initially, the pointer p points to the element a[1]. The increment

p++;

moves it to point to the next element (see Figure 6).

It is a tiny bit more efficient to dereference and increment a pointer than to access an
array element as a[i]. For this reason, some programmers routinely use pointers instead of
indexes to access array elements. However, the efficiency gain is quite insignificant, and the
resulting code is harder to understand, so it is not recommended. (See also Quality Tip 10.1.)

A Pointer Variable Traversing the
Elements of an Array

Some programmers take great pride in minimizing the number of instructions, even if the
resulting code is hard to understand. For example, here is a legal implementation of the

maximum function:

double maximum(const double* a, int a_size)

{
if (a_size == 0) return 0;
double highest = *a;
while (--a_size > 0)
if (*++a > highest)
highest = *a;
return highest;

ﬁ-%

g%% cce chl0fm Page 390 Thursday,M ay 9,2002 534 PM

3904

Pointers

This implementation uses two tricks. First, the function parameters a and a_size are vari-
ables, and it is legal to modify them. Moreover, the expressions

--a_size

and

++a

mean “decrement or increment the variable and return the new value”. Therefore, *++a is the
location to which a points after it has been incremented.

Please do not use this programming style. Your job as a programmer is not to dazzle other
programmers with your cleverness, but to write code that is easy to understand and maintain.

@

It can be confusing to tell whether a particular variable declaration yields a pointer variable or
an array variable. There are four cases:

int* p; // p isa pointer

int a[10]; // a isan array

int a[] = { 2, 3, 5, 7, 11, 13 }; // a isanarray
void f(int a[]); // a isa pointer

In the first case, you must initialize p to point somewhere before you use it.

R

Consider this function that tries to return a pointer to an array containing two elements, the
minimum and the maximum value of an array.

double* minmax(const double a[], int a_size)

{

assert(a_size > 0);

double result[2];

result[0] = a[0]; /* result[0] is the minimum */
result[1] = a[0]; /* result[1l] is the maximum */

for (int i = 0; i < a_size; i++)

{

if (a[i] < result[0]) result[0]
if (a[i] > result[1]) result[1]

alil;
alil;

}
return result; // ERROR!

ﬁ-%

g%% cce chl0fm Page 391 Thursday,M ay 9,2002 534 PM

Arrays and Pointers @

The function returns a pointer to the starting element of the result array. However, that
array is a local variable of the minmax function. The local variable is no longer valid when the
function exits, and the values will soon be overwritten by other functions calls.

Unfortunately, it depends on various factors when the values are overwritten. Consider
this test of the flawed minmax function:

double a[] = { 3, 5, 10, 2 };
double* mm = minmax(a, 4);
cout << mm[0] << " " << mm[1l] << "\n";

One compiler yields the expected result:
2 10

However, another compiler yields:
1.78747e-307 10

It just happens that the other compiler chose a different implementation of the iostream
library that involved more function calls, thereby clobbering the resu1t[0] value sooner.

It is possible to work around this limitation, by returning a pointer to an array that is allo-
cated on the heap. But the best solution is to avoid arrays and pointers altogether and to use
vectors instead. As you have seen in Chapter 9, a function can easily and safely receive and
return vector<double> objects:

vector<double> minmax(const vector<double>& a)

{
assert (a.size() > 0);
vector<double> result(2);
result[0] = a[0]; /* result[0] is the minimum */
result[1] = a[0]; /* result[1l] isthe maximum */
for (int i =0; i < a.size(Q); i++)
{
if (a[i] < result[0]) result[0] = a[i];
if (a[i] > result[1]) result[1l] = a[i];
}
return result; // OK!
}

You can allocate arrays of values from the heap. For example,

int staff_capacity = . . .;
Employee* staff = new Employee[staff_capacity];

The new operator allocates an array of n objects of type Employee, each of which is con-
structed with the default constructor. It returns a pointer to the starting element of the array.
Because of array/pointer duality, you can access elements of the array with the [] operator:
staff[i] is the Employee element with offset 1.

ﬁ-%

g%% cce chl0fm Page 392 Thursday,M ay 9,2002 534 PM

3924

Pointers

To deallocate the array, you use the delete[] operator.
delete[] staff;

It is an error to deallocate an array with the delete operator (without the []). However, the
compiler can’t detect this error—it doesn’t remember whether a pointer variable points to a
single object or to an array of objects. Therefore, you must be careful and remember which
pointer variables point to individual objects and which pointer variables point to arrays.

Heap arrays have one big advantage over array variables. If you declare an array variable,
you must specify a fixed array size when you compile the program. But when you allocate an
array on the heap, you can choose a different size for each program run.

If you later need more elements, you can allocate a bigger heap array, copy the elements
from the smaller array into the bigger array, and delete the smaller array:

int bigger_capacity = 2 * staff_capacity;

Employee* bigger = new Employee[bigger_capacity];

for (int i = 0; i < staff_capacity; i++)
bigger[i] = staff[i];

delete[] staff;

staff = bigger;

staff_capacity = bigger_capacity;

As you can see, heap arrays are more flexible than array variables. However, you should not
actually use them in your programs. Use vector objects instead. A vector contains a pointer
to a dynamic array, and it automatically manages it for you.

C++ has two mechanisms for manipulating strlngs The string class stores an arbltrary
sequence of characters and supports many convenient operations such as concatenation
and string comparison. However, C++ also inherits a more primitive level of string han-
dling from the C language, in which strings are represented as arrays of char values.

While we don't recommend that you use character pointers or arrays in your pro-
grams, you occasionally need to interface with functions that receive or return char* val-
ues. Then you need to know how to convert between char* pointers and string objects.

In particular, literal strings such as "Harry" are actually stored inside char arrays, not
string objects. When you use the literal string "Harry" in an expression, the compiler
allocates an array of 6 characters (including a '\0' terminator—see Section 9.5.3). The
value of the string expression is a char* pointer to the starting letter. For example, the
code

string name = "Harry";
is equivalent to

char* p = "Harry"; // p points to the letter 'H'

name = p;
The string class has a constructor string(char*) that you can use to convert any
character pointer or array to a safe and convenient string object. That constructor is
called whenever you initialize a string variable with a char* object, as in the preceding
example.

ﬁ-%

g%% cce chl0fm Page 393 Thursday,M ay 9,2002 534 PM

Pointers to Character Strings @

Here is another typical scenario. The tmpnam function of the standard library yields a
unique string that you can use as the name of a temporary file. It returns a char* pointer:
char* p = tmpnam(NULL);
Simply turn the char* return value into a string object:
string name = p;
or
string name(p);

Conversely, some functions require a parameter of type char*. Then use the c_str mem-
ber function of the string class to obtain a char* pointer that points to the first character
in the string object.

For example, the tempnam function in the standard library, which also yields a name
for a temporary file, lets the caller specify a directory. (Note that the tmpnam and tempnam
function names are confusingly similar.) The tempnam function expects a char* parameter
for the directory name. You can therefore call it as follows:

string dir = . . .;
char* p = tempnam(, NULL);

As you can see, you don't have to use character arrays to interface with functions that use
char* pointers. Simply use string objects and convert between string and char* types
when necessary.

X

Consider the pointer declaration
char* p = "Harry";

Note that this declaration is entirely different from the array declaration
char s[] = "Harry";

The second declaration is just a shorthand for
char s[6] = { '"H', 'a', 'r', 'r', 'y', '\0' };

p =
s = "H'
T
ey
ey
v
Character Pointers and Arrays '\0'

4~ ~¢

g%% cce chl0fm Page 394 Thursday,M ay 9,2002 534 PM

=

Pointers

The variable p is a pointer that points to the starting character of the string. The characters of
the string are stored elsewhere, not in p. In contrast, the variable s is an array of six charac-
ters. Perhaps confusingly, when used inside an expression, s denotes a pointer to the starting
character in the array. But there is an important difference: p is a pointer variable that you can
set to another character location. But the value s is constans—it always points to the same

location. See Figure 7.

There is an important difference between copying string objects and pointers of type char.

Consider this example:

string s = "Harry";
string t S;

t[0] = 'L"; // now s is "Harry" and t is "Larry"

After copying s into t, the string object t contains a copy of the characters of s. Modifying
t has no effect on s. However, copying character pointers has a completely different effect:

char* p = "Harry";
char* g = p

ql0] = 'L';’// now both p and q point to "Larry"

After copying p into q, the pointer variable q contains the same memory address as p. The
assignment to q[0] overwrites the starting letter in the string to which both p and q point

(see Figure 8) .

Note that you cannot assign one character array to another. The following assignment is

illegal:

char a[] = "Harry";
char b[6];
b = a; // ERROR

The standard library provides the strcpy function to copy a character array to a new location:

strcpy(b, a);

Two Character Pointers into the Same

Character Array

ﬁ-%

g%% cce chl0fm Page 395 Thursday,M ay 9,2002 534 PM

Chapter Summary @

The target pointer b must point to an array with sufficient space in it. It is a common begin-
ner’s error to try to copy a string into a character array with insufficient space. There is a safer
function, strncpy, with a third parameter that specifies the maximum number of characters
to copy:

strncpy(b, a, 5);
An even worse error is to use an uninitialized pointer variable for the target of the copy:

char* p;
strcpy(p, "Harry");

This is not a syntax error. The strcpy function expects two character pointers. However,
where is the string copied to? The target address p is an uninitialized pointer, pointing to a
random location. The characters in the string "Harry" are now copied into that random loca-
tion, either overwriting whatever was there before or triggering a processor exception that
terminates the program.

There is an easy way to avoid this bug. Ask yourself, “Where does the storage for the tar-
get string come from?” Character arrays don't magically appear; you have to allocate them.
The target of the string copy must be a character array of sufficient size to accommodate the
characters.

char buffer[100];
strcpy(buffer, "Harry™); // OK

As you can see, string handling with character arrays and pointers is tedious and error-prone.
The string class was designed to be a safe and convenient alternative. For that reason, we
strongly recommend that you use the string class in your own code.

A pointer denotes the location of a value in memory.
The * operator locates the value to which a pointer points.
Finding the value to which a pointer points is called dereferencing.

Use the -> operator to access a data member or a member function through an object
pointer.

The NULL pointer does not point to any object.
It is an error to dereference an uninitialized pointer or the NULL pointer.

You can obtain values of any type from the heap with the new operator. You must
recycle them with the delete operator.

Pointers can be used to model optional values (by using a NULL pointer when the
value is not present).

Pointers can be used to provide shared access to a common value.

The value of an array variable is a pointer to the starting element of the array.

ﬁ-%

g%% cce chl0fm Page 396 Thursday,M ay 9,2002 534 PM

395

Pointers

Pointer arithmetic means to add an integer offset to an array pointer. The result is a
pointer that skips past the given number of elements.

The array-pointer duality law states that a[n] is identical to *(a + n), whereaisa
pointer into an array and n is an integer offset.

When passing an array to a function, only the starting address is passed. The
parameter declaration #ype_name a[] is equivalent to zype_name* a.

Low-level string manipulation functions use pointers of type char*. You can con-
struct string variables from char* pointers, and you can use the c_str member
function to obtain a char* pointer from a string object.

Find the mistakes in the following code. Not all lines contain mistakes.
Each line depends on the lines preceding it. Watch out for uninitialized pointers, null
pointers, pointers to deleted objects, and confusing pointers with objects.

int* p = new int;

p=>5;

*p = *p + 5;

Employee el = new Employee("Hacker, Harry", 34000);
Employee e2;

e2->set_salary(38000);

delete e2;

Time* pnow = new Time();

Time* tl = new Time(2, 0, 0);

cout << tl->seconds_from(pnow);

delete *tl;

cout << tl->get_seconds();

Employee* e3 = new Employee("Lin, Lisa", 68000);
cout << c.get_salary(Q;

Time* t2 = new Time(1l, 25, 0);

cout << *t2.get_minutes();

delete t2;

A pointer variable can contain a pointer to a valid object, a pointer to a
deleted object, NULL, or a random value. Write code that creates and sets four pointer

variables a, b, c, and d to show each of these possibilities.

What happens when you dereference each of the four pointers that you
created in the preceding assignment? Write a test program if you are not sure.

What happens if you forget to delete an object that you obtained from
the heap? What happens if you delete it twice?

ﬁ-%

@

g%% cce chl0fm Page 397 Thursday,M ay 9,2002 534 PM

Review Exercises @

What does the following code print?

Employee harry = Employee("Hacker, Harry", 35000);
Employee boss = harry;

Employee* pharry = new Employee("Hacker, Harry", 35000);
Employee* pboss = pharry;

boss.set_salary(45000);

(*pboss) .set_salary(45000);

cout << harry.get_salary() << "\n";

cout << boss.get_salary() << "\n";

cout << pharry->get_salary() << "\n";

cout << pboss->get_salary() << "\n";

Pointers are addresses and have a numerical value. You can print out the
value of a pointer as cout << (unsigned long) (p). Write a program to compare p, p + 1,
g, and g + 1, where p is an int* and q is a double*. Explain the results.

In Chapter 2, you saw that you can use a cast (int) to convert a double
value to an integer. Explain why casting a double* pointer to an int* pointer doesn’t
make sense. For example,

double values[] = { 2, 3, 5, 7, 11, 13 };
int* p = (int*)values; // why won't this work?

Which of the following assignments are legal in C++?
void f(int p[])

{
int* q;
const int* r;
int s[10];
p=oqa; //1
p=r; //2
p=s;//3
a=mp; // 4
a=r; //5
a=-s; // 6
r=p; //7
r=aq; // 8
r=s; //9
s=p; // 10
s=q; // 11
s=r; // 12

}

Given the definitions

double values[] = { 2, 3, 5, 7, 11, 13 };
double* p = values + 3;

explain the meanings of the following expressions:
(a) values[1]
(b) values + 1
(c) *(values + 1)

- 4@

g%% cce chl0fm Page 398 Thursday,M ay 9,2002 534 PM

<

Pointers

(d) pr1]
(€ p+1
(f) p - values
Explain the meanings of the following expressions:
a) "Harry" + 1
b) *("Harry" + 2)
C) "Harry"[3]
d) [4]"Harry"

How can you implement a function minmax that computes both the

minimum and the maximum of the values in an array of integers and stores the result in
an int[2] array?

What is the difference between the following two variable definitions?

(a) char a[] = "Hello";
(b) char* b = "Hello";

What is the difference between the following three variable

definitions?

(a) char* p = NULL;
(b) char* g = "";
() char r[] ={ "\0O" };
Consider this program segment:
char a[] = "Mary had a Tittle Tlamb";

char* p = a;

int count = 0;

while (*p !'= '\0")

{
count++;
while (*p != " " && *p != "\0') p++;
while (*p == " ") p++;

}

What is the value of count at the end of the outer while loop?

What are the limitations of the strcat and strncat functions when

compared to the + operator for concatenating string objects?

Implement a class Person with the following fields:

the name

a pointer to the person’s best friend (a Person*)

a popularity counter that indicates how many other people have this person as
their best friend

ﬁ-%

@

g%% cce chl0fm Page 399 Thursday,M ay 9,2002 534 PM

Programming Exercises @

Write a program that reads in a list of names, allocates a new Person for each of them,
and stores them in a vector<Person*>. Then ask the name of the best friend for each
of the Person objects. Locate the object matching the friend’s name and call a
set_best_friend method to update the pointer and counter. Finally, print out all Person
objects, listing the name, best friend, and popularity counter for each.

Implement a class Person with two fields name and age, and a class Car
with three fields:

the model
a pointer to the owner (a Person*)
a pointer to the driver (also a Person*)

Write a program that prompts the user to specify people and cars. Store them in a vec-
tor<Person*> and a vector<Car*>. Traverse the vector of Person objects and increment
their ages by one year. Finally, traverse the vector of cars and print out the car model,
owner’s name and age, and driver’s name and age.

Enhance the Employee class to include a pointer to a BankAccount. Read
in employees and their salaries. Store them in a vector<Employee>. For each employee,
allocate a new bank account on the heap, except that two consecutive employees with the
same last name should share the same account. Then traverse the vector of employees
and, for each employee, deposit 1/12th of their annual salary into their bank account.
Afterwards, print all employee names and account balances.

Enhance the preceding exercise to delete all bank account objects. Make
sure that no object gets deleted twice.

Write a function that computes the average value of an array of floating-
point data:

double average(double* a, int a_size)

In the function, use a pointer variable, and not an integer index, to traverse the array ele-
ments.

Write a function that returns a pointer to the maximum value of an array
of floating-point data:

double* maximum(double a[], int a_size)
Ifa_size1s 0, return NULL.
Write a function that reverses the values of an array of floating-point data:
void reverse(double a[], int a_size)

In the function, use two pointer variables, and not integer indexes, to traverse the array
elements.

Implement the strncpy function of the standard library.

Implement the standard library function
int strspn(const char s[], const char t[])

that returns the length of the prefix of s consisting of characters in t (in any order).

4~ ~¢

g%% cce chl0fm Page 400 Thursday,M ay 9,2002 534 PM

@

Pointers

Write a function
void reverse(char s[])

that reverses a character string. For example, "Harry" becomes "yrraH".

Using the strncpy and strncat functions, implement a function

void concat(const char a[], const char b[], char result[],
int result_maxlength)

that concatenates the strings a and b to the buftfer result. Be sure not to overrun the
result. It can hold result_maxlength characters, not counting the '\0' terminator.
(That is, the buffer has result_maxlength + 1 bytes available.) Be sure to provide a "\0"
terminator.

Add a method

void Employee::format(char buffer[], int buffer_maxlength)

to the EmpTloyee class. The method should fill the buffer with the name and salary of the
employee. Be sure not to overrun the buffer. It can hold buffer_max1ength characters,
not counting the '\0' terminator. (That is, the buffer has buffer_maxlength + 1 bytes
available.) Be sure to provide a '\0' terminator.

Write a program that reads lines of text and appends them to a char
buffer[1000]. Stop after reading 1,000 characters. As you read in the text, replace all
newline characters '\n' with '\0' terminators. Establish an array char* 1ines[100], so
that the pointers in that array point to the beginnings of the lines in the text. Only con-
sider 100 input lines if the input has more lines. Then display the lines in reverse order,
starting with the last input line.

The preceding program is limited by the fact that it can only handle
inputs of 1,000 characters or 100 lines. Remove this limitation as follows. Concatenate
the input in one long string object. Use the c_str method to obtain a char* into the
string’s character buffer. Establish the pointers to the beginnings of the lines as a
vector<char*>,

The preceding problem demonstrated how to use the string and
vector classes to implement resizable arrays. In this exercise, you should implement
that capability manually. Allocate a buffer of 1,000 characters from the heap (new
char[1000]). Whenever the buffer fills up, allocate a buffer of twice the size, copy the
buffer contents, and delete the old buffer. Do the same for the array of char* pointers—
start with a new char*[100] and keep doubling the size.

@

