
Задача 1. Convex Hull (11626)

Finding the convex hull of a set of points is an important problem that is often part of a larger problem. There are many algorithms for finding the convex hull. Since problems involving the convex hull sometimes appear in the ACM World Finals, it is a good idea for contestants to know some of these algorithms.

Finding the convex hull of a set of points in the plane can be divided into two sub-tasks. First, given a set of points, find a subset of those

points that, when joined with line segments, form a convex polygon that encloses all of the original points. Second, output the points of the convex hull in order, walking counter-clockwise around the polygon. In this problem, the first sub-task has already been done for you, and your program should complete the second sub-task. That is, given the points that are known to lie on the convex hull, output them in order walking counter-clockwise around the hull.

Вход

The first line of input contains a single integer, the number of test cases to follow. The first line of each test case contains a single integer 3 <= n <= 100000, the number of points. The following n lines of the test case each describe a point. Each of these lines contains two integers and either a Y or an N, separated by spaces. The two integers specify the x- and y-coordinates of the point. A Y indicates that the point is on the convex hull of all the points, and a N indicates that it is not. The x- and y-coordinates of each point will be no less than -1000000000 and no greater than 1000000000. No point will appear more than once in the same test case. The points in a test case will never all lie on a line.

Изход

For each test case, generate the following output. First, output a line containing a single integer m, the number of points on the convex hull. Next output m lines, each describing a point on the convex hull, in counter-clockwise order around the hull. Each of these lines should contain the x-coordinate of the point, followed by a space, followed by the y-coordinate of the point. Start with the point on the hull whose x-coordinate is minimal. If there are multiple such points, start with the one whose y-coordinate is minimal.

Примерен Вход

Примерен Изход

1	4
5	-1 -1
1 1 Y	1 -1
1 -1 Y	1 1
0 0 N	-1 1
-1 -1 Y	
-1 1 V	

^{*}Тествайте решенията си на адрес:

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2673

Задача 2. Правоъгълници.

На екрана на компютърна игра се изрисуват правоъгълници. Играчът може да ги мести и мащабира, като ги избира по номер и задава код на операция. Да се пресметне площта заемана от всички правоъгълници, след манипулациите на играча.

Вход

На първия ред се задава цяло число N броя тестови примери.

За всеки тестов пример се посочва M и толкова на брой четворки реални числа — координатите x_a , y_a и x_b , y_b на горен десен и долен ляв ъгъл на правоъгълниците.

Следват числото K — показващо броя трансформации. Всяка една от тях се описва с едно цяло число L — номер на правоъгълник, който подлежи на трансформация, последван от код 1 или 2 за съответно транслация или мащабиране. Ако се извършва транслация следват координатите на вектора (x_b , y_t), а за мащабиране — едно реално положително число, показващо коефициента на мащабиране.

Изход

Извежда се едно реално число, закръглено до третия символ след запетаята, показващо лицето на фигурата образувана от правоъгълниците на екрана.

Примерен Вход

Примерен Изход