
13C h a p t e r

1

Lists,  staCks,  
and Queues

to become familiar with the list, stack,  
and queue data types

to understand the implementation of linked lists

to understand the efficiency of vector and list operations

C h a p t e r  G o a L s

C h a p t e r  C o n t e n t s

13.1  Using Linked Lists  2

13.2  impLementing Linked Lists  6

13.3  the efficiency of List, ArrAy, 
And Vector operAtions  19

13.4  stAcks And QUeUes  22

Random Fact 13.1: reverse polish notation 26



2

in this chapter, we introduce a new data structure, the 
linked list. a linked list is made up of nodes, each of which 
is connected to the neighboring nodes. You will learn how 
to use lists and the related stack and queue types. You will 
study the implementation of linked lists and analyze when 
linked lists are more efficient than arrays or vectors. 

13.1 using Linked Lists
A linked list is a data structure for collecting a sequence of objects, such that addition 
and removal of ele ments in the middle of the sequence is efficient.

To understand the need for such a data structure, imagine a program that maintains 
a vector of employee records, sorted by the last name of the employees. When a new 
employee is hired, an object needs to be inserted into the vector. Unless the company 
happens to hire employees in dictionary order, it is likely that a new employee object 
needs to be inserted into the middle of the vector. In that case, many other objects 
must be moved toward the end. Conversely, if an employee leaves the company, the 
hole in the sequence needs to be closed by moving all objects that came after it. Mov-
ing a large number of objects can involve a substantial amount of computer time. We 
would like to structure the data in a way that min imizes this cost.

Rather than storing the data in a single block of memory, a linked list uses a differ-
ent strategy. Each value is stored in its own memory block, together with the loca-
tions of the neighboring blocks in the sequence (see Figure 1). 

It is now an easy matter to add another value to the sequence (see Figure 2), or to 
remove a value from the sequence (Figure 3), without moving the others.

What’s the catch? Linked lists allow speedy insertion and removal, but element 
access can be slow. For example, suppose you want to locate the fifth element. You 
must first traverse the first four. This is a problem if you need to access the elements 
in arbitrary order. The term random access is used in computer science to describe an 
access pattern in which elements are accessed in arbitrary (not necessarily random) 
order. In contrast, sequential access visits the elements in sequence. For example, a 
binary search requires random access, whereas a lin ear search requires only sequen-
tial access.

Of course, if you mostly visit all elements in sequence (for example, to display or 
print the elements), the inefficiency of random access is not a problem. You use linked 
lists when you are concerned about the efficiency of inserting or removing elements 
and you rarely need element access in random order.

a linked list consists 
of a number of 
nodes, each of which 
has a pointer to the 
neighboring nodes.

adding and removing 
elements in the 
middle of a linked  
list is efficient.

Visiting the elements 
of a linked list in 
sequential order is 
efficient, but random 
access is not.

figure 1  a Linked List

Tom

Node

Diana

Node

Harry

Node



   3

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

13.1 using Linked Lists  3

figure 2  adding a node to a Linked List

Tom

Node

Diana

Node

Harry

Node

Romeo

Node

The standard C++ library has an implementation of the linked list container struc-
ture. In this section, you will learn how to use the standard linked list structure. Later 
you will look “under the hood” and find out how to implement linked lists. (The 
linked list of the standard C++ library has links going in both directions. Such a list is 
often called a doubly-linked list. A singly-linked list lacks the links to the predecessor 
elements.) 

Just like vector, the standard list is a template: You can declare lists for different 
types. For example, to make a list of strings, define an object of type list<string>. 
Then you can use the push_back function to add strings to the end of the list. The fol-
lowing code segment defines a list of strings, names, and adds three strings to it:

list<string> names;

names.push_back("Tom");
names.push_back("Diana");
names.push_back("Harry");

This code looks exactly like the code that you would use to build a vector of strings. 
There is, however, one major difference. Suppose you want to access the last element 
in the list. You cannot directly refer to names[2]. Because the values are not stored in 
one contiguous block in memory, there is no immediate way to access the third ele-
ment. Instead, you must visit each element in turn, starting at the beginning of the list 
and then proceeding to the next element.

figure 3  removing a node from a Linked List

Tom

Node

Diana

Node

Harry

Node



4 Chapter 13  Lists, stacks, and Queues 

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

To visit an element, you use a list iterator. An iterator marks a position in the list. 
To get an iterator that marks the beginning position in the list, you define an iterator 
variable, then call the begin function of the list class to get the beginning position:

list<string>::iterator pos;
pos = names.begin();

To move the iterator to the next position, use the ++ operator:
pos++;

You can also move the iterator backward with the -- operator:
pos--;

You use the * operator to find the value that is stored in the position marked by the 
iterator:

string value = *pos;

You have to be careful to distinguish between the iterator pos, which represents a 
position in the list, and the value *pos, which represents the value that is stored in the 
list. For example, if you change *pos, then you update the contents in the list:

*pos = "Romeo";
   // The list value at the position is changed

If you change pos, then you merely change the current position.
pos = names.begin();
   // The position is again at the beginning of the list

To insert another string before the iterator position, use the insert function:
names.insert(pos, "Romeo");

The insert function inserts the new element before the iterator position, rather than 
after it. This conven tion makes it easy to insert a new element before the first value of 
the list:

pos = names.begin();
names.insert(pos, "Romeo");

That raises the question of how you insert a value after the end of the list. Each list has 
an end position that does not correspond to any value in the list but that points past 
the list’s end. The end function returns that position:

pos = names.end(); // Points past the end of the list
names.insert(pos, "Juliet");
   // Insert past the end of the list

It is an error to compute
string value = *names.end(); // Error

The end position does not point to any value, so you cannot look up the value at that 
position. This error is equivalent to the error of accessing v[10] in a vector with 10 
elements.

The end position has another useful purpose: it is the stopping point for traversing 
the list. The follow ing code iterates over all elements of the list and prints them out:

pos = names.begin();
while (pos != names.end())
{
   cout << *pos << endl;
   pos++;

You can inspect and 
edit a linked list with 
an iterator. an 
iterator points to a 
node in a linked list. 



   5

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

13.1 using Linked Lists  5

}

The traversal can be described more concisely with a for loop:
for (pos = names.begin(); pos != names.end(); pos++)
{
   cout << *pos << endl;
}

Of course, this looks very similar to the typical for loop for traversing an array:
for (i = 0; i < size; i++)
{
   cout << a[i] << endl;
}

Finally, to remove an element from a list, you move an iterator to the position that 
you want to remove, then call the erase function. The erase function returns an itera-
tor that points to the element after the one that has been erased. 

The following code erases the second element of the list:
pos = names.begin();
pos++;
pos = names.erase(pos);

Now pos points to the element that was previously the third element and is now the 
second element. 

Here is a short example program that adds elements to a list, inserts and erases list 
elements, and finally traverses the resulting list:

ch13/list1.cpp

1 #include <string>
2 #include <list>
3 #include <iostream>
4 
5 using namespace std;
6 
7 int main()
8 {  
9    list<string> names;

10 
11    names.push_back("Tom");
12    names.push_back("Diana");
13    names.push_back("Harry");
14    names.push_back("Juliet");
15 
16    // Add a value in fourth place
17 
18    list<string>::iterator pos = names.begin();
19    pos++;
20    pos++;
21    pos++;
22 
23    names.insert(pos, "Romeo");
24 
25    // Remove the value in second place   
26 
27    pos = names.begin();
28    pos++;
29 
30    names.erase(pos);



6 Chapter 13  Lists, stacks, and Queues 

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

31 
32    // Print all values
33 
34     for (pos = names.begin(); pos != names.end(); pos++)  
35    {
36       cout << *pos << endl;
37    }
38 
39    return 0;
40  }

program run

Tom
Harry
Romeo
Juliet

1.  Do linked lists take more storage space than arrays of the same size?
2.  Why don’t we need iterators with arrays?
3.  Make a linked list of integers containing the numbers 1 through 10.
4.  How do you erase the first element of the linked list names?
5.  How do you erase the last element of the linked list names?
6.  How do you add "Buffy" as the second element in the list names?

practice it  Now you can try these exercises at the end of the chapter: R13.4, R13.5, P13.4.

13.2 implementing Linked Lists
The previous section showed you how to put linked lists to use. However, because 
the implementation of the list class is hidden from you, you had to take it on faith 
that the list values are really stored in sepa rate memory blocks. We will now walk 
through an implementation of the list, node, and iterator classes. 

For simplicity, we will implement linked lists of strings. To implement the linked 
list class in C++ that can hold values of arbitrary types, you need to know how to 
program with templates (see Horstmann and Budd, Big C++, 2nd ed., Chapter 16). 
To implement iterators that behave exactly like the ones in the C++ library, you also 
need to know about operator overloading and nested classes (see Big C++, 2nd ed., 
Chapters 17 and 18).

13.2.1 the Classes for Lists, nodes, and iterators

The list class of the standard library defines many useful member functions. For 
simplicity, we will only study the implementation of the most useful ones: push_back, 
insert, erase, and the iterator operations. We call our class List, with an uppercase L, to 
differentiate it from the standard list class template.

A linked list stores each value in a separate object, called a node. A node object 
holds a value, together with pointers to the previous and next nodes:

s e L f   c h e c k



   7

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

13.2 implementing Linked Lists  7

class Node
{
public:
   Node(string s);
private:
   string data;
   Node* previous;
   Node* next;
friend class List;
friend class Iterator;
}; 

A list node contains pointers to the next and previous nodes.
Note the friend declarations. They indicate that the List and Iterator member 

functions are allowed to inspect and modify the data members of the Node class, which 
we will write presently.

A class should not grant friendship to another class lightly, because it breaks the 
privacy protection. In this case, it makes sense, though, because the list and iterator 
functions do all the necessary work and the node class is just an artifact of the imple-
mentation that is invisible to the users of the list class. Note that no code other than 
the member functions of the list and iterator classes can access the data members of 
the node class, so the data integrity is still guaranteed.

A list object holds the locations of the first and last nodes in the list:
class List
{
public:
   List();
   void push_back(string data);
   void insert(Iterator pos, string s);
   Iterator erase(Iterator pos);
   Iterator begin();
   Iterator end();
private:
   Node* first;
   Node* last;
friend class Iterator;
};

If the list is empty, then the first and last pointers are NULL. Note that a list object 
stores no data; it just knows where to find the node objects that store the list contents.

Finally, an iterator denotes a position in the list. It holds a pointer to the node that 
denotes its current position, and a pointer to the list that created it. Our iterator class 
uses member functions get, next, previous, and equals instead of operators *, ++, --, and 
==. For example, we will call pos.next() instead of pos++. 

class Iterator
{
public:
   Iterator();
   string get() const;
   void next();
   void previous();
   bool equals(Iterator b) const;
private:
   Node* position;
   List* container;
friend class List;
};

When implementing 
a linked list, we need 
to define list, node, 
and iterator classes. 

a list object contains 
pointers to the first 
and last nodes.

an iterator contains a 
pointer to the current 
node, and to the list 
that contains it.



8 Chapter 13  Lists, stacks, and Queues 

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

If the iterator points past the end of the list, then the position pointer is NULL. In that 
case, the previous member function uses the container pointer to move the iterator 
back from the past-the-end position to the last element of the list. (This is only one 
possible choice for implementing the past-the-end position. Another choice would 
be to store an actual dummy node at the end of the list. Some implementations of the 
standard list class do just that.)

13.2.2 implementing iterators

Iterators are created by the begin and end member functions of the List class. The begin 
function creates an iterator whose position pointer points to the first node in the list. 
The end function creates an iterator whose position pointer is NULL.

Iterator List::begin()
{
   Iterator iter;
   iter.position = first;
   iter.container = this;
   return iter;
}

Iterator List::end()
{
   Iterator iter;
   iter.position = NULL;
   iter.container = this;
   return iter;
}

The next function (which is the equivalent of the ++ operator) advances the iterator 
to the next position. This is a very typical operation in a linked list; let us study it in 
detail. The position pointer points to the current node in the list. That node has a data 
member next. Because position is a node pointer, you use the –> operator to access the 
data member next:

position->next 

That next data member is itself a pointer, pointing to the next node in the linked list 
(see Figure 4). To make position point to that next node, write

position = position->next;

Thus, the  next function is simply:
void Iterator::next()
{
   position = position->next;
}

Note that you can evaluate position->next only if position is not NULL, because it is an 
error to dereference a NULL pointer. That is, it is illegal to advance the iterator once it 
is in the past-the-end position. Our imple mentation does not check for this error; 
neither does the implementation of the standard C++ library.

The previous function (which is the equivalent of the -- operator) is a bit more 
complex. In the ordinary case, you move the position backward with the instruction

position = position->previous;



   9

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

13.2 implementing Linked Lists  9

However, if the iterator is currently past the end, then you must make it point to the 
last element in the list. 

void Iterator::previous()
{  
   if (position == NULL)
   {
      position = container->last;
   }
   else 
   {
      position = position->previous;
   }
}

The get function (which is the equivalent of the * operator) simply returns the data 
value of the node to which position points—that is, position->data. It is illegal to call 
get if the iterator points past the end of the list:

string Iterator::get() const
{
   return position->data;
}

Finally, the equals function (which is the equivalent of the == operator) compares two 
position pointers:

bool Iterator::equals(Iterator b) const
{
  return position == b.position;
}

figure 4  advancing an iterator

Node Node Node

data =

next =

previous = NULL

data =

next =

previous =

data =

next = NULL

previous =

Iterator

position =

container =

List

first =

last =



10 Chapter 13  Lists, stacks, and Queues 

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

13.2.3 implementing insertion and removal

In the last section you saw how to implement the iterators that traverse an existing 
list. Now you will see how to build up lists by adding and removing elements, one 
step at a time. 

First, we will implement the push_back function. It appends an element to the end of 
the list (see Figure 5). Make a new node:

Node* new_node = new Node(s);

This new node must be integrated into the list after the node to which the last pointer 
points. That is, the data member next of the last node (which is currently NULL) must 
be updated to new_node. Also, the data member previous of the new node must point to 
what used to be the last node:

new_node->previous = last; 1
last->next = new_node; 2

Finally, you must update the last pointer to reflect that the new node is now the last 
node in the list:

last = new_node; 3

However, there is a special case when last is NULL, which can happen only when the 
list is empty. After the call to push_back, the list has a single node—namely, new_node. In 
that case, both first and last must be set to new_node:

void List::push_back(string data)
{
   Node* new_node = new Node(data);
   if (last == NULL) // List is empty
   {
      first = new_node;
      last = new_node;
   }
   else
   {

figure 5  appending a node to the end of a Linked List

Node

data =

next =

previous =

List

first =

last =

... ...

...

Node

data =

next =

previous =

new_node =

1

2

3

List nodes are 
allocated on the 
heap, using the new 
operator.



   11

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

13.2 implementing Linked Lists  11

      new_node->previous = last;
      last->next = new_node;
      last = new_node;
   }
}

Inserting an element in the middle of a linked list is a little more difficult, because the 
node pointers in the two nodes surrounding the new node need to be updated. The 
function declaration is

void List::insert(Iterator iter, string s)

That is, a new node containing s is inserted before iter.position (see Figure 6). 
Give names to the surrounding nodes. Let before be the node before the insertion 

location, and let after be the node after that. That is,
Node* after = iter.position;
Node* before = after->previous;

What happens if after is NULL? After all, it is illegal to apply -> to a NULL pointer. In this 
situation, you are inserting past the end of the list. Simply call push_back to handle that 
case separately. Otherwise, you need to insert new_node between before and after:

new_node->previous = before; 1
new_node->next = after; 2

You must also update the nodes from before and after to point to the new node:
after->previous = new_node; 3
before->next = new_node;   // If before != NULL 4

figure 6  inserting a node into a Linked List

Node Node

data =

next =

previous =

data =

next =

previous =

Iterator

position =

container =

Node

data =

next =

previous =

new_node =

1

...

...

after =

iter =

before =

4

2

3



12 Chapter 13  Lists, stacks, and Queues 

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

However, you must be careful. You know that after is not NULL, but it is possible that 
before is NULL. In that case, you are inserting at the beginning of the list and need to 
adjust first:

if (before = NULL) // Insert at beginning
{
   first = new_node;
}
else
{
   before->next = new_node;
}

Here is the complete code for the insert function:
void List::insert(Iterator iter, string s)
{
   if (iter.position == NULL)
   {
      push_back(s);
      return;
   }

   Node* after = iter.position;
   Node* before = after->previous;
   Node* new_node = new Node(s);
   new_node->previous = before;
   new_node->next = after;
   after->previous = new_node;
   if (before == NULL) // Insert at beginning
   {
      first = new_node;
   }
   else
   {
      before->next = new_node;
   }
}

Finally, look at the implementation of the erase function:
Iterator List::erase(Iterator iter)

You want to remove the node to which iter.position points. As before, give names to 
the node to be removed, the node before it, and the node after it:

Node* remove = iter.position;
Node* before = remove->previous;
Node* after = remove->next;

You need to update the next and previous pointers of the before and after nodes to 
bypass the node that is to be removed (see Figure 7).

before->next = after;  // If before != NULL 1
after->previous = before;  // If after != NULL 2



   13

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

13.2 implementing Linked Lists  13

However, as before, you need to cope with the possibility that before, after, or both 
are NULL. If before is NULL, you are erasing the first element in the list. It has no predeces-
sor to update, but you must change the first pointer of the list. Conversely, if after 
is NULL, you are erasing the last element of the list and must update the last pointer of 
the list:

if (remove == first)
{
   first = after;
}
else
{
   before->next = after;
}
if (remove == last)
{
   last = before;
}
else
{
   after->previous = before;
}

You must adjust the iterator position so it no longer points to the removed element.
iter.position = after; 3

Finally, you must remember to recycle the removed node:
delete remove;

When a list node is 
erased, it is recycled 
to the heap with the 
delete operator.

figure 7  removing a node from a Linked List

Node Node Node

data =

next =

previous =

data =

next =

previous =

data =

next =

previous =

Iterator

position =

container =

before = remove = after =

...

...

...

...

1

2

3



14 Chapter 13  Lists, stacks, and Queues 

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

Here is the complete erase function. Note that the function returns an iterator to the 
element following the erased one:

Iterator List::erase(Iterator iter)
{  
   Node* remove = iter.position;
   Node* before = remove->previous;
   Node* after = remove->next;
   if (remove == first)
   {
      first = after;
   }
   else
   {
      before->next = after;
   }
   if (remove == last)
   {
      last = before;
   }
   else
   {
      after->previous = before;
   }
   delete remove;
   Iterator r;
   r.position = after;
   r.container = this;
   return r;
}

Implementing these linked list operations is somewhat complex. It is also error-
prone. If you make a mis take and misroute some of the pointers, you can get subtle 
errors. For example, if you make a mistake with a previous pointer, you may never 
notice it until you traverse the list backwards. If a node has been deleted, then that 
same storage area may later be reallocated for a different purpose, and if you have 
kept a pointer to it, following that invalid node pointer will lead to disaster. You must 
exercise special care when implementing any operations that manipulate the node 
pointers directly.

Here is a program that puts our linked list to use and demonstrates the insert and 
erase operations:

ch13/list2.cpp 
1 #include <string>
2 #include <iostream>
3 
4 using namespace std;
5 
6 class List;
7 class Iterator;
8 
9 class Node

10 {
11 public:
12    /** 
13       Constructs a node with a given data value.
14       @param s the data to store in this node

implementing 
operations that 
modify a linked list is 
challenging—you 
need to make sure 
that you update all 
node pointers 
correctly.



   15

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

13.2 implementing Linked Lists  15

15    */
16    Node(string s);
17 private:
18    string data;
19    Node* previous;
20    Node* next;
21 friend class List;
22 friend class Iterator;
23 };
24 
25 class List
26 {
27 public:
28    /**
29       Constructs an empty list. 
30    */
31    List();
32    /**
33       Appends an element to the list. 
34       @param data the value to append 
35    */
36    void push_back(string data);
37    /**
38       Inserts an element into the list. 
39       @param iter the position before which to insert 
40       @param s the value to append 
41    */
42    void insert(Iterator iter, string s);
43    /**
44       Removes an element from the list. 
45       @param iter the position to remove 
46       @return an iterator pointing to the element after the 
47       erased element 
48    */
49    Iterator erase(Iterator iter);
50    /**
51       Gets the beginning position of the list. 
52       @return an iterator pointing to the beginning of the list  
53    */
54    Iterator begin();
55    /**
56       Gets the past-the-end position of the list. 
57       @return an iterator pointing past the end of the list 
58    */
59    Iterator end();
60 private:
61    Node* first;
62    Node* last;
63 friend class Iterator;
64 };
65 
66 class Iterator
67 {
68 public:
69    /**
70       Constructs an iterator that does not point into any list.  
71    */
72    Iterator();
73    /**  
74       Looks up the value at a position. 



16 Chapter 13  Lists, stacks, and Queues 

75       @return the value of the node to which the iterator points 
76    */
77    string get() const;
78    /**
79       Advances the iterator to the next node. 
80    */
81    void next();
82    /**
83       Moves the iterator to the previous node. 
84    */
85    void previous();
86    /**
87       Compares two iterators. 
88       @param b the iterator to compare with this iterator 
89       @return true if this iterator and b are equal 
90    */
91    bool equals(Iterator b) const;
92 private:
93    Node* position;
94    List* container;
95 friend class List;
96 };
97 
98 Node::Node(string s)
99 {  

100    data = s;
101    previous = NULL;
102    next = NULL;
103 }
104 
105 List::List()
106 {  
107    first = NULL;
108    last = NULL;
109 }
110 
111 void List::push_back(string data)
112 {  
113    Node* new_node = new Node(data);
114    if (last == NULL) // List is empty
115    {  
116       first = new_node;
117       last = new_node;
118    }
119    else
120    {  
121       new_node->previous = last;
122       last->next = new_node;
123       last = new_node;
124    }
125 }
126 
127 void List::insert(Iterator iter, string s)
128 {  
129    if (iter.position == NULL)  
130    {  
131       push_back(s);
132       return;
133    }
134 



13.2 implementing Linked Lists  17

135    Node* after = iter.position;
136    Node* before = after->previous;
137    Node* new_node = new Node(s);
138    new_node->previous = before;
139    new_node->next = after;
140    after->previous = new_node;
141    if (before == NULL) // Insert at beginning
142    {
143       first = new_node;
144    }
145    else
146    {
147       before->next = new_node;
148    }
149 }
150 
151 Iterator List::erase(Iterator iter)
152 {  
153    Node* remove = iter.position;
154    Node* before = remove->previous;
155    Node* after = remove->next;
156    if (remove == first)
157    {
158       first = after;
159    }
160    else
161    {
162       before->next = after;
163    }
164    if (remove == last)
165    {
166       last = before;
167    }
168    else
169    {
170       after->previous = before;
171    }
172    delete remove;
173    Iterator r;
174    r.position = after;
175    r.container = this;
176    return r;
177 }
178 
179 Iterator List::begin()
180 {  
181    Iterator iter;
182    iter.position = first;
183    iter.container = this;
184    return iter;
185 }
186 
187 Iterator List::end()
188 {  
189    Iterator iter;
190    iter.position = NULL;
191    iter.container = this;
192    return iter;
193 }
194 



18 Chapter 13  Lists, stacks, and Queues 

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

195 Iterator::Iterator()
196 {  
197    position = NULL;
198    container = NULL;
199 }
200 
201 string Iterator::get() const
202 {  
203    return position->data;
204 }
205 
206 void Iterator::next()
207 {  
208    position = position->next;
209 }
210 
211 void Iterator::previous()
212 {  
213    if (position == NULL)
214    {
215       position = container->last;
216    }
217    else 
218    {
219       position = position->previous;
220    }
221 }
222 
223 bool Iterator::equals(Iterator b) const
224 {  
225    return position == b.position;
226 }
227 
228 int main()
229 {  
230    List names;
231 
232    names.push_back("Tom");
233    names.push_back("Diana");
234    names.push_back("Harry");
235    names.push_back("Juliet");
236 
237    // Add a value in fourth place
238 
239    Iterator pos = names.begin();
240    pos.next();
241    pos.next();
242    pos.next();
243 
244    names.insert(pos, "Romeo");
245 
246    // Remove the value in second place
247 
248    pos = names.begin();
249    pos.next();
250 
251     names.erase(pos);
252 
253     // Print all values
254 



   19

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

13.3 the efficiency of List, array, and Vector operations  19

255    for (pos = names.begin(); !pos.equals(names.end()); pos.next())
256    {
257       cout << pos.get() << endl;
258    }
259 
260      return 0;
261 }

program run

Tom
Harry
Romeo
Juliet

7.  Trace through the push_back method when adding an element to an empty list.
8.  If the iterator pos has been set to names.end(), trace through the call 

names.insert(pos, "Fred").
9.  If the iterator pos has been set to names.begin(), trace through the call 

names.insert(pos, "Fred"). Assume the list is not empty.
10.  Why does the insert method have three separate cases?
11.  What happens when you try to move an iterator past the end of a list?

practice it  Now you can try these exercises at the end of the chapter: P13.6, P13.7, P13.10.

13.3 the efficiency of List, array, and Vector 
operations

In this section, we will formally analyze how efficient the fundamental operations on 
linked lists, arrays, and vectors are. We will consider these operations:

• Getting the kth element
• Adding and removing an element at a given position (an iterator or index)
• Adding and removing an element at the end

To get the kth element of a linked list, you start at the beginning of the list and advance 
the iterator k times. Suppose it takes an amount of time T to advance the iterator 
once. This quantity is independent of the iterator position—advancing an iterator 
does some checking and then it follows the next pointer. Therefore, advancing the 
iterator to the kth element consumes kT time. Therefore, locating the kth ele ment is 
an O(k) operation. 

To get the kth element of an array, we use an expression such as a[k]. This is exe-
cuted in a constant amount of time that is independent of k. We say that accessing an 
array element takes O(1) time.

To analyze the situation for vectors, we need to peek under the hood and see how 
the vector class is implemented.

A vector maintains a pointer to an array of elements termed the buffer. An integer 
data member, called the capacity, is the maximum number of elements that can be 

s e L f   c h e c k

Locating the kth 
element is an O(k) 
operation for  
linked lists.

Locating an element 
is an O(1) operation 
for arrays and 
vectors.



20 Chapter 13  Lists, stacks, and Queues 

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

figure 8   
internal data Members  
Maintained by Vector

4 3 7

current_size =

Vector

current_capacity =

buffer =

3

5

stored in the current buffer. The buffer is usu ally larger than is necessary to hold the 
current elements in the container. The size is the number of ele ments actually being 
held by the container. Because vectors use zero-based indexing, the size can also be 
interpreted as the first free location in the array. Figure 8 shows vector internals. 

The kth element is accessed through the expression buffer[k], which is done in 
constant or O(1) time.

Next, consider the task of adding an element in the middle of a list, array, or vector. 
For a linked list, we assume that we already have an iterator to the insertion location. 
It might have taken some time to get there, but we are now con cerned with the cost of 
insertion after the position has been established. 

As shown in Figure 6, you add an element by modifying the previous and next 
pointers of the new node and the surrounding nodes. This operation takes a constant 
number of steps, independent of the position. The same holds for removing an ele-
ment. We conclude that list insertion and removal are O(1) opera tions.    

For arrays and vectors, the situation is less rosy. To insert an element at position 
k, the elements with higher index values need to move (see Figure 9). How many ele-
ments are affected? For simplicity, we will assume that insertions happen at random 
locations. On average, each insertion moves n / 2 elements, where n is the size of the 
array or vector.

The same argument holds for removing an element. On average, n / 2 elements 
need to be moved. Therefore, we say that array and vector insertion and removal are 
O(n) operations. 

There is one situation where adding an element to an array or vector isn’t so costly: 
when the insertion happens at the end. The push_back member function carries out 
that operation. 

If the size of the vector is less than the capacity, the new element is simply moved 
into place and the size is incremented, as shown in Figure 10. This is an O(1) 
operation.

adding an element in 
a linked list is an O(1) 
operation.

adding an element in 
the middle of an 
array or vector of 
size n is an O(n) 
operation.

adding an element to 
the end of an array is 
an O(1) operation.

figure 9  inserting and removing Vector elements

[0]

[k]

[size() - 1]

1
2
3
4
5

[0]

[k]

[size() - 1]

5
4
3
2
1



   21

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2011 John Wiley and Sons, Inc. All rights reserved.

13.3 the efficiency of List, array, and Vector operations  21

figure 10   
Vector after push_back

4 3 7 2

current_size =

Vector

current_capacity =

buffer =

4

5

If, however, the size is equal to the capacity, it means that no more space is avail-
able. With an array, there is nothing to be done—the element cannot be inserted. 
Vectors, on the other hand, can grow. In order to make new space, a new and larger 
buffer is allocated. This new buffer is typically twice the size of the current buffer (see 
Figure 11). The existing elements are then copied into the new buffer, the old buffer is 
deleted, and insertion takes place as before. Reallocation is an O(n) operation because 
all elements need to be copied to the new buffer.

If we carefully analyze the total cost of a sequence of push_back operations, it turns 
out that these reallo cations are not as expensive as they first appear. The key observa-
tion is that reallocation does not happen very often. Suppose we start with a vector of 
capacity 10 and double the size with each reallocation. We must reallocate when the 
buffer reaches sizes 10, 20, 40, 80, 160, 320, 640, 1280, and so on. 

Let us assume that one insertion without reallocation takes time T1 and that real-
location of k elements takes time kT2. What is the cost of 1,280 push_back operations? 
Of course, we pay 1280 · T1 for the inser tions. The reallocation cost is

10 20 40 1280 1 2 4 128 102 2 2 2 2T T T T T+ + + + = + + + + ⋅ ⋅� �( )

== ⋅ ⋅

< ⋅ ⋅

= ⋅ ⋅

255 10

256 10

1280 2

2

2

2

T

T

T

Therefore, the total cost is a bit less than

1280 21 2⋅ +( )T T

In general, the total cost of n push_back operations is less than n T T⋅ +( )1 22 . Because 
the second factor is a constant, we conclude that n push_back operations take O(n) time.

We know that it isn’t quite true that an individual push_back operation takes O(1) 
time. After all, occa sionally a push_back is unlucky and must reallocate the buffer. But 
if the cost of that reallocation is distrib uted over the preceding push_back operations, 
then the surcharge for each of them is still a constant amount. 

figure 11   
Vector after a  
Buffer reallocation

4 3 7 2 5 9

current_size =

Vector

current_capacity =

buffer =

6

10



22 Chapter 13  Lists, stacks, and Queues 

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

table 1  execution times for Container operations

operation array/Vector Linked List

Add/remove element at end O(1)+ O(1)

Add/remove element in the middle O(n) O(1)

Get kth element O(1) O(k)

We say that push_back takes amortized O(1) time, which is written as O(1)+. 
(Accountants say that a cost is amortized when it is distributed over multiple 
periods.)

Finally, we note that the push_back operation for a linked list takes O(1) time, pro-
vided that the linked list implementation maintains a pointer to the last element of the 
list. Table 1 summarizes the execution times that we discussed in this section.  

12.  What is the big-Oh efficiency for removing the middle element of a linked list?
13.  What is the big-Oh efficiency for removing the middle element of an array?
14.  Why doesn’t it make sense to use a binary search algorithm on a sorted list? 

practice it  Now you can try these exercises at the end of the chapter: R13.11, R13.15.

13.4 stacks and Queues
In this section, you will consider two common data types that allow insertion and 
removal of items at the ends only, not in the middle. 

A stack lets you insert and remove elements at one end only, traditionally called 
the top of the stack. To visualize a stack, think of a stack of books (see Figure 12). 

New items can be added (or pushed) to the top of the stack. Items are removed (or 
popped) from the top of the stack as well. Therefore, they are removed in the order 
that is opposite from the order in which they have been added, also called last in, first 
out or LIFO order. For example, if you push strings "Tom", "Diana", and "Harry" into a 
stack, and then pop them one by one, then you will first see "Harry", then "Diana", and 
finally "Tom". 

an element can be 
added to the end of a 
vector in amortized 
O(1) time.

s e L f   c h e c k

a stack is a container 
of items with “last in, 
first out” retrieval.

figure 12   
a stack of Books



   23

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2011 John Wiley and Sons, Inc. All rights reserved.

13.4 stacks and Queues  23

To obtain a stack in the standard C++ library, you use the stack template:
stack<string> s;
s.push("Tom");
s.push("Diana");
s.push("Harry");
while (s.size() > 0)
{
   cout << s.top() << endl;
   s.pop();

}   

The pop member function removes the top of the stack without returning a value. If 
you want to obtain the value before popping it, first call top, then pop.

A queue lets you add items to one end of the queue (the back) and remove them 
from the other end of the queue (the front). To visualize a queue, simply think of 
people lining up (see Figure 13). People join the back of the queue and wait until they 
have reached the front of the queue. Queues store items in a first in, first out or FIFO 
fashion. Items are removed in the same order in which they have been added. 

The standard queue template implements a queue in C++. As with stacks, the addi-
tion and removal operations are called push and pop. The front member function yields 
the first element of the queue (that is, the next one to be removed). The back mem-
ber function yields the element that was most recently added. You cannot access any 
other elements of the queue. Here is an example of using a queue:

queue<string> q;
q.push("Tom");
q.push("Diana");
q.push("Harry");
while (q.size() > 0)
{
   cout << q.front() << endl;
   q.pop();
}

In the standard C++ library, the push and pop functions of the stack and queue classes 
have O(1) effi ciency.

a queue is a 
container of items 
with “first in, first 
out” retrieval.

figure 13  a Queue



24 Chapter 13  Lists, stacks, and Queues 

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

figure 14  stack and Queue Behavior

Push Top/Pop

Stack Queue

PushFront/Pop

.

.

.

. . .

Figure 14 contrasts the behaviors of the stack and queue data types. 
There are many uses of stacks and queues in computer science. For example, con-

sider an algorithm that attempts to find a path through a maze. When the algorithm 
encounters an intersection, it pushes the location on the stack, and then it explores 
the first branch. If that branch is a dead end, it returns to the location at the top of 
the stack and explores the next untried branch. If all branches are dead ends, it pops 
the location off the stack, revealing a previously encountered intersection. Another 
important example is the run-time stack that a processor keeps to organize the vari-
ables of nested functions. Whenever a new function is called, its parameters and local 
variables are pushed onto a stack. When the method exits, they are popped off again. 
This stack makes recursive function calls possible.

As an example for the use of a queue, consider a printer that receives requests to 
print documents from multiple applications. If each of the applications sends print-
ing data to the printer at the same time, then the printouts will be garbled. Instead, 
each application places all data to be sent to the printer into a file and inserts that file 
into the print queue. When the printer is done printing one file, it retrieves the next 
one from the queue. Therefore, print jobs are printed using the first in, first out rule, 
which is a fair arrangement for users of the shared printer.

The following sample program demonstrates the first-in, first-out order of a queue 
and the last-in, last-out order of a stack.

ch13/fifolifo.cpp

1 #include <iostream>
2 #include <string>
3 #include <queue>
4 #include <stack>
5 
6 using namespace std;
7 
8 int main()
9 {

10    cout << "FIFO order:" << endl;
11 
12    queue<string> q;
13    q.push("Tom");



  2513.4 stacks and Queues  25

14    q.push("Diana");
15    q.push("Harry");
16 
17    stack<string> s;
18    while (q.size() > 0)
19    {
20       string name = q.front();
21       q.pop();
22       cout << name << endl;
23       s.push(name);
24    }
25 
26    cout << "LIFO order:" << endl;
27 
28    while (s.size() > 0)
29    {
30       cout << s.top() << endl;
31       s.pop();
32    }
33 
34    return 0;
35 }

program run

FIFO order:
Tom
Diana
Harry
LIFO order:
Harry
Diana
Tom

15.  Why wouldn’t you want to use a stack to manage print jobs?
16.  What does this code print?

queue<int> q;
for (int i = 1; i <= 10; i++) { q.push(i); }
for (int i = 1; i <= 5; i++) { q.pop(); }
cout << q.front() << endl;

17.  What does this code print?
stack<int> s;
for (int i = 1; i <= 10; i++) { s.push(i); }
for (int i = 1; i <= 5; i++) { s.pop(); } 
cout << s.top() << endl;

18.  Describe how a stack can be used to check whether the parentheses in an arith-
metic expression are balanced correctly. For example, 3 + (4 / (5 – 6)) is correct, 
but 3 + (4 / 5)) – (6 is not.

19.  Why would it not be a good idea to use a vector for a queue?

practice it  Now you can try these exercises at the end of the chapter: R13.16, R13.18, P13.18.

s e L f   c h e c k

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2011 John Wiley and Sons, Inc. All rights reserved.



26 Chapter 13  Lists, stacks, and Queues 

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

When you write arith
metic expressions, 

you are used to operators with differ
ent levels of precedence that appear 
between the operands, except when 
parentheses are used to specify a dif
ferent ordering. that is, an expression 
such as 3 + (4 – 2 ) × 7 is evaluated by 
first subtracting the 2 from the 4, then 
multiplying the result by 7, and finally 
adding the 3. notice how the sequence 
of operations jumps around instead of 
being analyzed in a strict left to right or 
right to left order.  

in the 1920s a polish mathemati
cian, Jan Łukasiewicz, noticed that if 
you wrote the operators first, before 
the operands, the need for both paren
theses and precedence was elim inated 
and expressions could be read eas
ily from left to right. in Łukasiewicz‘s 
notation, the expres sion would be writ
ten as + 3  × – 4 2 . table 2 shows some 
other examples.

evaluating an expression in 
Łukasiewicz’s form is a simple recur
sive algorithm. examine the next term; 
if it is a constant, then that is your 
result; if it is a binary operator, then 
recursively examine the follow ing two 
expressions and produce their result. 
the scheme was termed polish nota
tion in Łukasiewicz’s honor (although 

one can argue it should be called    
Łukasiewicz nota tion). of course, an 
entrenched nota tion is not easily dis
placed, even when it has distinct disad
vantages, and Łukasiewicz’s discovery 
did not cause much of a stir for about 
50 years. 

in the 1950s, australian computer 
scientist Charles hamblin noted that an 
even better scheme would be to have 
the operators follow the oper ands. this 
was termed Reverse Polish Notation, or 
rpn. the expression given would be 
written as 3 4 2 – 7 × + in rpn. as you 
have seen, the evaluation of rpn is rel
atively simple if you have a stack. each 
operand is pushed on the stack. each 
operator pops the appropriate number 
of val ues from the stack, performs the 
oper ation, and pushes the result back 
onto the stack.

in 1972, hewlettpackard intro
duced the hp 35 calculator that 
used rpn. For example, to compute 
3 + 4 * 5, you enter 3 4 5 * +. rpn 
calculators have no keys labeled with 
parentheses or an equals symbol. 
there is only a key labeled enter to 
push a number onto a stack. For that 
reason, hewlettpackard’s market
ing department used to refer to their 
product as “the calculators that have 
no equal”. indeed, the hewlettpackard 

calculators were a great advance over 
competing models that were unable 
to handle algebraic notation and left 
users with no other choice but to write 
intermediate results on paper. 

over time, developers of high qual
ity calculators have adapted to the 
standard algebraic notation rather 
than forcing users to learn a new nota
tion. however, those users who have 
made the effort of learning rpn tend 
to be fanatic proponents, and some 
hewlettpackard calculator models still 
support it. 

Random Fact 13.1 reverse polish notation

table 2  polish notation examples

standard notation Łukasiewicz notation rpn

3 + 4 + 3 4 3 4 +

3 + 4  ×  5 + 3 * 4 5 3 4 5 * +

3 × (4  +  5) * 3 + 4 5 3 4 5 + *

(3 + 4)  ×  5 * + 3 4 5 3 4 + 5 *

3 + 4  +  5 + + 3 4 5 3 4 + 5 +



review exercises 27

describe the linked list data structure and the use of list iterators.

• A linked list consists of a number of nodes, each of which has a pointer to the 
neighboring nodes.

• Adding and removing elements in the middle of a linked list is efficient.
• Visiting the elements of a linked list in sequential order is efficient, but random 

access is not.
• You can inspect and edit a linked list with an iterator. An iterator points to a node 

in a linked list.

explain how linked lists are implemented.

• When implementing a linked list, we need to define list, node, and iterator classes.
• A list object contains pointers to the first and last nodes.
• An iterator contains a pointer to the current node, and to the list that contains it.
• List nodes are allocated on the heap, using the new operator.
• When a list node is erased, it is recycled to the heap with the delete operator.
• Implementing operations that modify a linked list is challenging—you need to 

make sure that you update all node pointers correctly.

know the efficiencies of the fundamental operations on lists, arrays, and vectors.

• Locating the kth element is an O(k) operation for linked lists.
• Locating an element is an O(1) operation for arrays and vectors.
• Adding an element in a linked list is an O(1) operation.
• Adding an element in the middle of an array or vector of size n is an O(n) 

operation.
• Adding an element to the end of an array is an O(1) operation.
• An element can be added to the end of a vector in amortized O(1) time.

describe the stack and queue data structures.

• A stack is a container of items with “last in, first out” retrieval.
• A queue is a container of items with “first in, first out” retrieval.

r13.1  If a list has n elements, how many legal positions are there for inserting a new ele-
ment? For erasing an element?

r13.2  What happens if you keep advancing an iterator past the end of the list? Before the 
beginning of the list? What happens if you look up the value at an iterator that is past 
the end? If you erase the past-the-end position? All these are illegal operations, of 
course. What does the list implementation of your compiler do in these cases?

C h a p t e r  s u M M a r Y

r e V i e W  e x e r C i s e s

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2011 John Wiley and Sons, Inc. All rights reserved.



28 Chapter 13  Lists, stacks, and Queues 

C++ for Everyone, 2e,  Cay Horstmann, Copyright © 2011 John Wiley and Sons, Inc. All rights reserved.

r13.3  Write a function that prints all values in a linked list, starting from the end of the list.

r13.4  The following code edits a linked list consisting of three nodes.

Tom

Node

Diana

Node

Harry

Node

first

Draw a diagram showing how they are linked together after the following code is  
executed.

Node* p1 = first->next;
Node* p2 = first;
while (p2->next != NULL) { p2 = p2->next; }
first->next = p2;
p2->next = p1;
p1->next = NULL;
p2->previous = first;
p1->previous = p2;
last = p1;

r13.5  Explain what the following code prints.
list<string> names;
list<string>::iterator p = names.begin();
names.insert(p, "Tom");
p = names.begin();
names.insert(p, "Diana");
p++;
names.insert(p, "Harry");
for (p = names.begin(); p != names.end(); p++)
   { cout << *p << endl; }

r13.6  The insert procedure of Section 13.2.3 inserts a new element before the iterator posi-
tion. To understand the updating of the nodes, draw before/after node diagrams for 
the following four scenarios.

a. The list is completely empty.
b. The list is not empty, and the iterator is at the beginning of the list.
c. The list is not empty, and the iterator is at the end of the list.
d. The list is not empty, and the iterator is in the middle of the list.

r13.7  What advantages do lists have over vectors? What disadvantages do they have?

r13.8  Suppose you need to organize a collection of telephone numbers for a company 
division. There are currently about 6,000 employees, and you know that the phone 
switch can handle at most 10,000 phone numbers. You expect several hundred look-
ups against the collection every day. Would you use a vector or a linked list to store 
the information?

r13.9  Suppose you need to keep a collection of appointments. Would you use a linked list 
or a vector of Appointment objects?

r13.10  Suppose you write a program that models a card deck. Cards are taken from the 
top of the deck and given out to players. As cards are returned to the deck, they are 
placed on the bottom of the deck. Would you store the cards in a stack or a queue?



review exercises 29

r13.11  Consider the efficiency of locating the kth element in a linked list of length n. 
If k > n / 2, it is more efficient to start at the end of the list and move the iterator to 
the previous element. Why doesn’t this increase in efficiency improve the big-Oh 
esti mate of random access in a linked list?

r13.12  Explain why inserting an element into the middle of a list is faster than inserting an 
element into the middle of a vector.

r13.13  Explain why the push_back operation with a vector is usually constant time, but oc-
casionally much slower.

r13.14  Suppose a vector implementation were to add 10 elements at each reallocation 
instead of doubling the capacity. Show that the push_back operation no longer has 
amortized constant time. 

r13.15  What is the big-Oh efficiency of selection sort when it is applied to a linked list? 

r13.16  Suppose the strings "A" through "Z" are pushed onto a stack. Then they are popped 
off the stack and pushed onto a second stack. Finally, they are popped off the sec ond 
stack and printed. In which order are the strings printed?

r13.17  What are the efficiencies of the push and pop operations of a stack when it is imple-
mented using a linked list? Explain your answer.

r13.18  What are the efficiencies of the push and pop operations of a stack when it is imple-
mented using a vector? Explain your answer.

r13.19  What are the efficiencies of the push and pop operations of a queue when it is imple-
mented using a linked list? Explain your answer.

r13.20  What are the efficiencies of the push and pop operations of a queue when it is imple-
mented using a vector? Explain your answer.

r13.21  Consider the following algorithm for traversing a maze such as this one: 

18 19 20 21 22

16 17

11 12 13 14 15

9 10

4 5 6 7 8

1 2 3

Entrance Exit

Make the cell at the entrance the current cell. Take the following actions, then repeat:
• If the current cell is adjacent to the exit, stop.
• Mark the current cell as visited.
• Add all unvisited neighbors to the north, east, south, and west to a queue.
• Remove the next element from the queue and make it the current cell.

In which order will the cells of the sample maze be visited?

r13.22  Repeat Exercise R13.17, using a stack instead of a queue.

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2011 John Wiley and Sons, Inc. All rights reserved.



30 Chapter 13  Lists, stacks, and Queues 

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

p13.1  Write a function

void downsize(list<string>& names)

that removes every second value from a linked list.

p13.2  Write a function maximum that computes the largest element in a list<int>.

p13.3  Write a function sort that sorts the elements of a linked list (without copying them 
into a vector).

p13.4  Write a function merge that merges two lists into one, alternating elements from each 
list until the end of one of the lists has been reached, then appending the remaining 
elements of the other list. For example, merging the lists containing A B C and D E F G 
H should yield the list A D B E C F G H.

p13.5  Provide a linked list of integers by modifying the Node, List, and Iterator classes of 
Section 13.2 to hold integers instead of strings.

p13.6  Write a member function List::reverse() that reverses the nodes in a list.

p13.7  Write a member function List::push_front() that adds a value to the beginning of a 
list.

p13.8  Write a member function List::swap(List& other) that swaps the elements of this list 
and other. Your method should work in O(1) time.

p13.9  Write a member function List::get_size() that computes the number of elements in 
the list, by counting the elements until the end of the list is reached.

p13.10  Add a size data member to the List class. Modify the insert and erase functions to 
update the data member size so that it always contains the correct size. Change the 
get_size() function of Exercise P13.9 to take advantage of this data member.

p13.11  Turn the linked list implementation into a circular list: Have the previous pointer of 
the first node point to the last node, and the next pointer of the last node point to the 
first node. Then remove the last pointer in the List class because the value can now 
be obtained as first->previous. Reimplement the member functions so that they have 
the same effect as before.

p13.12  Turn the linked list implementation into a singly-linked list: Drop the previous 
pointer of the nodes and the previous member function of the iterator. Reimplement 
the other member functions so that they have the same effect as before. Hint: In 
order to remove an element in constant time, iterators should store the predecessor 
of the current node.

p13.13  Modify the linked list implementation to use a dummy node for the past-the-end 
position whose data member is unused. A past-the-end iterator should point to the 
dummy node. Remove the container pointer in the iterator class. Reimplement the 
member functions so that they have the same effect as before.

p13.14  Write a class Polynomial that stores a polynomial such as

p x x x x( ) = + − −5 9 1010 7

p r o G r a M M i n G  e x e r C i s e s



programming exercises 31

as a linked list of terms. A term contains the coefficient and the power of x. For 
example, you would store p(x) as

5 10 9 7 1 1 10 0, , , , , , ,( ) ( ) −( ) −( )
Supply member functions to add, multiply, and print polynomials. Supply a con-
structor that makes a polynomial from a single term. For example, the polynomial p 
can be constructed as

Polynomial p(Term(-10, 0));
p.add(Polynomial(Term(-1, 1)));
p.add(Polynomial(Term(9, 7)));
p.add(Polynomial(Term(5, 10)));

Then compute p x p x( ) ( )× .
Polynomial q = p.multiply(p);
q.print();

p13.15  Implement a Stack class, using a linked list of strings. Supply operations size, push, 
pop, and top, just like in the standard stack template.

p13.16  Implement a Queue class, using a linked list of strings. Supply operations size, push, 
pop, front, and back, just like in the standard queue template.

p13.17  Using a queue of vectors, implement a non-recursive variant of the merge sort 
algo rithm as follows. Start by inserting the entire vector to be sorted. We assume its 
size is a power of 2. Keep removing vectors from the queue, splitting them into two 
vec tors of equal size, and adding the smaller vectors back into the queue. Once you 
encounter vectors of size 1, change to the following behavior: Remove pairs of vec-
tors from the queue, merge them into a single vector and add the result back into the 
queue. Stop when the queue has size 1.

p13.18  Use a stack to enumerate all permutations of a string without using recursion. Sup-
pose you want to find all permutations of the string meat. Push the string +meat on the 
stack. Now repeat the following operations until the stack is empty:

• Pop off the top of the stack.
• If that string ends in a + (such as tame+), remove the + and print the string
• Otherwise, remove each letter in turn from the right of the +, insert it just 

before the +, and push the resulting string on the stack. For example, after pop-
ping e+mta, you push em+ta, et+ma, and ea+mt. 

p13.19  In a paint program, a “flood fill” fills all empty pixels of a drawing with a given 
color, stopping when it reaches occupied pixels. In this exercise, you will implement 
a simple variation of this algorithm, flood-filling a 10 × 10 array of integers that are 
initially 0. Prompt for the starting row and column. Push the (row, column) pair on a 
stack. (You will need to provide a simple Pair class.) 
Then repeat the following operations until the stack is empty:

• Pop off the (row, column) pair from the top of the stack.
• If it has not yet been filled, fill it now. (Fill in numbers 1, 2, 3, and so on, to 

show the order in which the square is filled.)
• Push the coordinates of any unfilled neighbors in the north, east, south, or west 

direction on the stack.
When you are done, print the entire array.

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2011 John Wiley and Sons, Inc. All rights reserved.



32 Chapter 13  Lists, stacks, and Queues 

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

p13.20  Repeat Exercise P13.19, but use a queue instead.

p13.21  Repeat Exercise P13.18, but use a queue instead.

1.  Yes, for two reasons. You need to store the node pointers, and each node is a sep arate 
object. (There is a fixed overhead to store each object.)

2.  An integer index can be used to access any array location.
3.  list<int> numbers; 

for (int i = 1; i <= 10; i++) { numbers.push_back(i); }

4.  names.erase(names.begin()); 
5.  list<string>::iterator pos = names.end(); 

pos--;
names.erase(pos);

6.  list<string>::iterator pos = names.begin(); 
pos++;
names.insert(pos, "Buffy");

7.  A new node is allocated that holds the data and has next and previous values set to 
NULL. An empty list has first and last set to NULL, so the first branch of the if state-
ment is executed. Now first and last both point to the new node. 

8.  Tracing through the end function, we see that pos.position is NULL. Hence the if state-
ment in the insert function is executed, which simply calls push_back.

9.  In this case, iter.position points to the first node, and it is not NULL. after also points 
to the first node, and before is set to NULL. A new node is allocated. Its previ ous pointer 
is set to NULL, and its next pointer to the first node, thereby adding it before the first 
node in the linked list. To complete the linkage, the previously first node has its 
previous pointer updated to point to the new node. Because before is NULL, the first 
pointer of the list is updated.

10.  When inserting at the end of the list, the last pointer needs to be updated. When 
inserting at the beginning of the linked list, the first pointer needs to be updated. 
When inserting in the middle, neither first nor last are updated.

11.  At the end of the list, iter.position is NULL. When calling the next member function, 
the expression position->next is a null pointer error that will likely terminate your 
program. 

12.  To reach the middle of the linked list takes n / 2 traversal steps. The removal is done 
in constant time. Thus, the operation is O(n).

13.  To remove the middle element, the n / 2 elements beyond it must be moved. Thus, 
the operation is O(n).

14.  The first step in the binary search algorithm asks to visit the middle node in the list. 
That is an O(n) operation, requiring the traversal of half the nodes. Thus, binary 
search is no longer O(log n). You might as well inspect the list elements as you 
traverse them. 

15.  Stacks use a “last in, first out” discipline. If you are the first one to submit a print 
job and lots of people add print jobs before the printer has a chance to deal with 

a n s W e r s  t o  s e L F  C h e C k  Q u e s t i o n s



answers to selfCheck Questions 33

your job, they get their printouts first, and you have to wait until all other jobs are 
completed.

16.  6
17.  5
18.  When encountering a (, push it on a stack. When encountering a ), pop the stack. 

However, if the stack is empty, report an error. When the end of the expression is 
reached, the stack should be empty. If not, report an error.

19.  Adding an element at the front of a vector is an O(n) operation. 

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2011 John Wiley and Sons, Inc. All rights reserved.


