
C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Eleven: Recursion

Slides by Evan Gallagher & Nikolay Kirov

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

• To learn to “think recursively”

• To be able to use recursive helper functions

• To understand the relationship between
recursion and iteration

• To understand when the use of recursion affects the
efficiency of an algorithm

• To analyze problems that are much easier to solve by
recursion than by iteration

Chapter Goals

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Recursion

Recursion is a powerful technique

 for breaking up complex computational

problems into simpler ones,

 where the “simpler one”

is the solution to the whole problem!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Recursion

A recursive function is a function that calls itself,

reducing the problem a bit on each call:

void solveIt(the-Problem)

{

 . . .

 solveIt(the-Problem-a-bit-reduced);

}

Of course, there’s a lot more to it than this.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Recursion

In recursion,

the same computation recurs,

or occurs repeatedly,

as the problem is solved.

 But this is not looping!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Recursion

Recursion is often the most natural way

of thinking about a problem,

 and there are some computations

that are very difficult to perform without recursion.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Recursion

Of course, just as you have been doing as you learn

how to program, you’ll have to first learn

(or relearn)

 how to think…

…how to “think recursively”.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Let’s begin by solving this problem:

Write a function,

yes, of course recursive one!,

that prints a triangle of “boxes”

void print_triangle(int side_length);

[]

[][]

[][][]

[][][][]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Of course this is easily done with nested loops,

but we are teaching you how to think recursively.

So think recursively!

[]

[][]

[][][]

[][][][]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

How to think recursively?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

It helps if you are

(or pretend to be while thinking recursively)

a bit lazy:

let others do most of the work for you!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Pretend that “someone else”

has written the function that draws triangles.

Now that problem is solved, analyze the problem,

looking for a way to reduce the problem and

use that function to solve the reduced problem:

[]

[][]

[][][]

[][][][]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

You can call that function

(that someone else wrote)

to solve the reduced problem

of printing a triangle of side length three,

[]

[][]

[][][]

[][][][]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

then

you solve the much easier problem of

printing a line of 4 boxes.

[]

[][]

[][][]

[][][][]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

 void print_triangle(int side_length)

 {

 print_triangle(side_length - 1);

[]

[][]

[][][]

[][][][]

The problem is being
reducing by making
 the length 1 shorter.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

 void print_triangle(int side_length)

 {

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

 }
[]

[][]

[][][]

[][][][]

Now that simple for
statement to draw a line
side_length long.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

 void print_triangle(int side_length)

 {

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

 }
[]

[][]

[][][]

[][][][]

Now that simple for
statement to draw a line
side_length long.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

BUT WAIT!!!

[]

[][]

[][][]

[][][][]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

BUT WAIT!!!

[]

[][]

[][][]

[][][][]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

BUT WAIT!!!

[]

[][]

[][][]

[][][][]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

BUT WAIT!!!

[]

[][]

[][][]

[][][][]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

What if the

side length was…

one?

[]

[][]

[][][]

[][][][]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

 Drawing a line of only one box is easy, but…

 we certainly don’t want to recurse,

reducing the problem to a triangle of

0 length,

[]

[][]

[][][]

[][][][]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

 Drawing a line of only one box is easy, but…

 we certainly don’t want to recurse,

reducing the problem to a triangle of

0 length, do we?!?!?!

[]

[][]

[][][]

[][][][]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

 void print_triangle(int side_length)

 {

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

 }

Zero?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

 When the length of the line is less than one,

we simply do not want to make the recursive call

at all!

So we must test for:

the END CONDITION.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

When we are through, stop…

…don’t recurse any more.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The two keys requirements

for a successful recursive function:

• Every recursive call must simplify the task in some way.

• There must be special cases to handle the simplest

tasks directly so that the function will stop calling itself.

How to think recursively – The Two Key Requirements

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 We can “trace” this recursive function call:

How to think recursively – Triangles of Boxes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

side_length: 4

CURRENT CALL: print_triangle(4)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-In call print_triangle(4)

side_length: 4

CURRENT CALL: print_triangle(4)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

side_length: 4

CURRENT CALL: print_triangle(4)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--In call print_triangle(3)

side_length: 3

CURRENT CALL: print_triangle(3)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--In call print_triangle(3)

side_length: 3

CURRENT CALL: print_triangle(3)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--The call print_triangle(3) calls print_triangle(2).

side_length: 3

CURRENT CALL: print_triangle(3)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--The call print_triangle(3) calls print_triangle(2).

---In call print_triangle(2)

side_length: 2

CURRENT CALL: print_triangle(2)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--The call print_triangle(3) calls print_triangle(2).

---In call print_triangle(2)

side_length: 2

CURRENT CALL: print_triangle(2)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--The call print_triangle(3) calls print_triangle(2).

---The call print_triangle(2) calls print_triangle(1).

side_length: 2

CURRENT CALL: print_triangle(2)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--The call print_triangle(3) calls print_triangle(2).

---The call print_triangle(2) calls print_triangle(1).

----In call print_triangle(1)

side_length: 1

CURRENT CALL: print_triangle(1)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--The call print_triangle(3) calls print_triangle(2).

---The call print_triangle(2) calls print_triangle(1).

----In call print_triangle(1)

side_length: 1

CURRENT CALL: print_triangle(1)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--The call print_triangle(3) calls print_triangle(2).

---The call print_triangle(2) calls print_triangle(1).

----The call print_triangle(1) calls print_triangle(0).

side_length: 1

CURRENT CALL: print_triangle(1)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--The call print_triangle(3) calls print_triangle(2).

---The call print_triangle(2) calls print_triangle(1).

----The call print_triangle(1) calls print_triangle(0).

-----In call print_triangle(0)

side_length: 0

CURRENT CALL: print_triangle(0)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--The call print_triangle(3) calls print_triangle(2).

---The call print_triangle(2) calls print_triangle(1).

----The call print_triangle(1) calls print_triangle(0).

-----In call print_triangle(0)

side_length: 0

CURRENT CALL: print_triangle(0)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--The call print_triangle(3) calls print_triangle(2).

---The call print_triangle(2) calls print_triangle(1).

----The call print_triangle(1) calls print_triangle(0).

-----The call print_triangle(0) returns, doing nothing.

side_length: 0

CURRENT CALL: print_triangle(0)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--The call print_triangle(3) calls print_triangle(2).

---The call print_triangle(2) calls print_triangle(1).

----The call print_triangle(1) calls print_triangle(0).

-----The call print_triangle(0) returns, doing nothing.

----Back in print_triangle(1) prints [] and returns.

[]

side_length: 1

CURRENT CALL: print_triangle(1)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--The call print_triangle(3) calls print_triangle(2).

---The call print_triangle(2) calls print_triangle(1).

----The call print_triangle(1) calls print_triangle(0).

-----The call print_triangle(0) returns, doing nothing.

----Back in print_triangle(1) prints [] and returns.

--- Back in print_triangle(2) prints [][] and returns.

[]

[][]

side_length: 2

CURRENT CALL: print_triangle(2)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--The call print_triangle(3) calls print_triangle(2).

---The call print_triangle(2) calls print_triangle(1).

----The call print_triangle(1) calls print_triangle(0).

-----The call print_triangle(0) returns, doing nothing.

----Back in print_triangle(1) prints [] and returns.

--- Back in print_triangle(2) prints [][] and returns.

-- Back in print_triangle(3) prints [][][] and returns.

[]

[][]

[][][]

side_length: 3

CURRENT CALL: print_triangle(3)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void print_triangle(int side_length)

{

 if (side_length < 1) { return; }

 print_triangle(side_length - 1);

 for (int i = 0; i < side_length; i++)

 {

 cout << "[]";

 }

 cout << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

Someone calls print_triangle(4)

-The call print_triangle(4) calls print_triangle(3).

--The call print_triangle(3) calls print_triangle(2).

---The call print_triangle(2) calls print_triangle(1).

----The call print_triangle(1) calls print_triangle(0).

-----The call print_triangle(0) returns, doing nothing.

----Back in print_triangle(1) prints [] and returns.

--- Back in print_triangle(2) prints [][] and returns.

-- Back in print_triangle(3) prints [][][] and returns.

- Back in print_triangle(4) prints [][][][.and returns.

[]

[][]

[][][]

[][][][]

side_length: 4

CURRENT CALL: print_triangle(4)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Ah

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How to think recursively – Triangles of Boxes

[]

[][]

[][][]

[][][][]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 We can modify this problem to solve the

 triangle number problem:

Triangle Numbers

[]

[][]

[][][]

[][][][]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 We can modify this problem to solve the

 triangle number problem:

What is the sum of 1’s in a triangular pattern?

Or, what is the area of a triangle of height n?

 n Triangle number:

Triangle Numbers

1

1 1

1 1 1

1 1 1 1

 1 (1)

 3 (2 + 1)

 6 (3 + 2 + 1)

10 (4 + 3 + 2 + 1)

1

2

3

4

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 We start by thinking about the end condition:
when side_length is 1,

the triangle number (the area) is 1 and we are done:

Triangle Numbers

int triangle_area(int side_length)

{

 if (side_length == 1) { return 1; }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

int triangle_area(int side_length)

{

 if (side_length == 1) { return 1; }

 int smaller_side_length = side_length - 1;

 int smaller_area = triangle_area(smaller_side_length);

 return smaller_area + side_length;

}
C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

What about the reduced problem?

What value should we add to the current side length?

If the current side length is 4,

Triangle Numbers

1

1 1

1 1 1

1 1 1 1

this triangle number

(the smaller triangle)

 plus this side length

 (the current side length)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

int triangle_area(int side_length)

{

 if (side_length == 1) { return 1; }

 int smaller_side_length = side_length - 1;

 int smaller_area = triangle_area(smaller_side_length);

 return smaller_area + side_length;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

There might be a problem with this code:

What would happen if this function were called with -1?

Triangle Numbers

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 To make sure this doesn’t happen,

we should add a test that handles this situation:

Triangle Numbers

int triangle_area(int side_length)

{

 if (side_length <= 0) { return 0; }

 if (side_length == 1) { return 1; }

 int smaller_side_length = side_length - 1;

 int smaller_area = triangle_area(smaller_side_length);

 return smaller_area + side_length;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The complete program follows.

Triangle Numbers

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Triangle Numbers

/**

 Computes the area of a triangle with a given side length.

 @param side_length the side length of the triangle base

 @return the area

*/

int triangle_area(int side_length)

{

 if (side_length <= 0) { return 0; }

 if (side_length == 1) { return 1; }

 int smaller_side_length = side_length - 1;

 int smaller_area = triangle_area(smaller_side_length);

 return smaller_area + side_length;

}

int main()

{

 cout << "Enter the side length: ";

 int input;

 cin >> input;

 cout << "Area: " << triangle_area(input) << endl;

 return 0;

}

ch11/triangle.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Consider this function:

void forever_young()

{

 cout << "I am ";

 forever_young();

 cout << “forever young!";

}

Common Error: Infinite Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 I am I am I am I am I am I am I am I am I
am I am I am I am I am I am I am I am I am
I am I am I am I am I am I am I am I am I
am I am I am I am I am I am I am I am I am
I am I am I am I am I am I am I am I am I
am I am I am I am I am I am I am I am I am
I am I am I am I am I am I am I am I am I
am I am I am I am I am I am I am I am I am
I am I am I am I am I am I am I am I am I
am I am I am I am I am I am I am I am I am
I am I am I am I am I am I am I am I am I
am I am I am I am I am I am I am I am I am
I am I am I am I am I am I am I am I am I
am I am I am I am I am I am I am I am I am
I am I am I am I am I am I am I am I am I
am I am I am I am I am I am I am I am I am
I am I am I am I am I am I am I am I am I
am I am I am I am I am I am I am I am I am
I am I am I am I am I am I am I am I am I

Common Error: Infinite Recursion

Jane!
How do I stop

this crazy
thing?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

You would get very, very old waiting to be “forever young!”

void forever_young()

{

 cout << "I am ";

 forever_young();

 cout << “forever young!";

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error: Infinite Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Infinite recursion is an error, for sure.

Each function call uses some system resources
that only a return statement releases.

It is very likely that your computer will hang or crash or

whatever you call it when it just WON’T STOP.

Common Error: Infinite Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 In the previous code,

the programmer forgot to write the end test.

 This is easy to see in that code.

Infinite recursion can also occur

when the test to end

 never happens.

Common Error: Infinite Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Recall the two keys requirements
for a successful recursive function:

• Every recursive call must simplify the task in some way.

• There must be special cases to handle the simplest
tasks directly so that the function will stop calling itself.

Failing to implement these requirements can lead to

infinite recursion (and very unpleasant consequences).

Common Error: Infinite Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Go hang a salami,

I’m a lasagna hog

Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 A man,

 a plan,

a canal

— Panama!

Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Madam,

I’m Adam

Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 rotor

Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 I

Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Palindrome:

 a string that is equal to itself

when you reverse all characters

Thinking Recursively – Palindromes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The problem:

Write a function to test if a string is a palindrome.

bool is_palindrome(string s)

Thinking Recursively – Palindromes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 We will, of course, be thinking recursively.

How to reduce the problem?

Thinking Recursively – Palindromes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How about :

Remove the first character?

Remove the last character?

Remove both the first and the last character?

Remove a character from the middle?

Cut the string into two halves?

Thinking Recursively – Palindromes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Every palindrome’s first half

is the same as its other (better?) half.

 In this problem,

chopping in half

seems to be a good way to reduce the problem.

Thinking Recursively – Palindromes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Thinking Recursively – Palindromes

Did someone

 say chop?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 "rotor"

 (chop)

 "rot" "or"

 Neither of these is a palindrome.

Not sure how chopping in half gets us closer to a way to

determine a palindromic situation.

Thinking Recursively – Palindromes

oo

!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 One character at a time seems not so good.

How about chopping off BOTH ends at the same time?

Thinking Recursively – Palindromes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Thinking Recursively – Palindromes

Symmetrical

chopping.

Nice!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 "rotor"

 (chop)

 "r"

Thinking Recursively – Palindromes

oo!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 "rotor"

 (chop) (chop)

 "r"

Thinking Recursively – Palindromes

oo! aa!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 "rotor"

 (chop) (chop)

 "r" "r"

Thinking Recursively – Palindromes

oo! aa!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 "rotor"

 (chop) (chop)

 "r" "oto" "r"

Thinking Recursively – Palindromes

oo! aa!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 "rotor"

 (chop) (chop)

 "r" "oto" "r"

 The 'r' on both ends means

 this is starting to look like a palindrome.

Thinking Recursively – Palindromes

oo! aa!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 "rotor"

 (chop) (chop)

 "r" "oto" "r"

 We can reduce the problem

to the “middle” of the string for the recursive call.

Thinking Recursively – Palindromes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 "rotor"

 (chop) (chop)

 "r" "oto" "r"

 So the recursive algorithm is:

Thinking Recursively – Palindromes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 "rotor"

 (chop) (chop)

 "r" "oto" "r"

 If the end letters are the same

 AND
is_palindrome(the middle word)

 then the string is a palindrome!

Thinking Recursively – Palindromes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Now we start thinking recursively:

when to end and how to handle those situations?

Thinking Recursively – Palindromes

oo

I

 " "

It’s very

friendly,

actually

Do not be

frightened

– it’s not

really

a monster!

– even when you

plan to chop it

into pieces!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Each of these is a possible ending condition.

Thinking Recursively – Palindromes

oo

I

 " "

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

But wait!

"oo" will become "" when we recurse,

taking off both ends.

(chop)

Thinking Recursively – Palindromes

oo

"o"

"o"

" "

!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

That leaves us with two possible end situations:

 string of length 0

 string of length 1

Thinking Recursively – Palindromes

bool is_palindrome(string s)

{

 // Separate case for shortest strings

 if (s.length() == 0 || s.length() == 1){ return true; }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Otherwise, we recurse on “the middle”.

Thinking Recursively – Palindromes

 // Get first and last character, converted to lowercase

 char first = tolower(s[0]);

 char last = tolower(s[s.length() - 1]);

 if (first == last)

 {

 string shorter = s.substr(1, s.length() - 2);

 return is_palindrome(shorter);

 }

 else

 {

 return false;

 }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Thinking Recursively – Palindromes

#include <iostream>

#include <string>

#include <vector>

using namespace std;

/**

 Tests whether a string is a palindrome. A palindrome

 is equal to its reverse, for example “rotor” or “racecar”.

 @param s a string

 @return true if s is a palindrome

*/

bool is_palindrome(string s)

{

 // Separate case for shortest strings

 if (s.length() == 0 || s.length() == 1){ return true; }

 // Get first and last character, converted to lowercase

 char first = s[0];

 char last = s[s.length() – 1];

ch11/palindrome.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Thinking Recursively – Palindromes

 if (first == last)

 {

 string shorter = s.substr(1, s.length() - 2);

 return is_palindrome(shorter);

 }

 else

 {

 return false;

 }

}

int main()

{

 cout << "Enter a string: ";

 string input;

 getline(cin, input);

 cout << input << " is ";

 if (!is_palindrome(input)) { cout << "not "; }

 cout << "a palindrome." << endl;

 return 0;

}

ch11/palindrome.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Sometimes it is easier to find a recursive solution

if you change the original problem slightly.

Then the original problem can be solved
by calling a recursive helper function.

Recursive Helper Functions

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Consider the palindrome problem.

It is a bit inefficient to construct

new string objects in every step.

Recursive Helper Functions

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Now consider the following change in the problem.

Rather than testing whether the

entire string is a palindrome,

check whether a substring is a palindrome:

Recursive Helper Functions

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Check whether a substring is a palindrome:

 This function turns out to be even easier

to implement than the original test.

Thinking Recursively – Palindromes

/*

 Tests whether a substring of a string is a palindrome.

 @param s the string to test

 @param start the index of the first character of the substring

 @param end the index of the last character of the substring

 @return true if the substring is a palindrome

*/

bool substring_is_palindrome(string s, int start, int end);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

In the recursive calls, simply adjust the start and end
arguments to skip over matching letter pairs.

There is no need to construct new string
objects to represent the shorter strings.

Thinking Recursively – Palindromes

bool substring_is_palindrome(string s, int start, int end)

{

 // Separate case for substrings of length 0 and 1

 if (start >= end) { return true; }

 if (s[start] == s[end])

 {

 // Test substring that doesn’t contain

 // the first and last letters

 return substring_is_palindrome(s, start + 1, end - 1);

 }

 else

 {

 return false;

 }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Now that the helper function is written,
don’t forget to solve the problem!

Thinking Recursively – Palindromes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Provide a function that solves the problem
by calling the helper function.

This will be an easy one:

This function is not recursive but the helper function is.

Thinking Recursively – Palindromes

bool is_palindrome(string s)

{

 return substring_is_palindrome(s, 0, s.length() - 1);

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

As you have seen in this chapter,

recursion can be a powerful tool for implementing
complex algorithms.

On the other hand,
recursion can lead to algorithms that perform poorly.

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Fibonacci sequence

is a sequence of numbers defined by the equation

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Each value in the sequence is

the sum of the two preceding values.

The first ten terms of the sequence are:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55,…

The next entry would be 34 + 55, or 89.

This sequence continues forever.

In code:

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Thinking Recursively – Palindromes

#include <iostream>

using namespace std;

/**

 Computes a Fibonacci number.

 @param n an integer (non-negative)

 @return the nth Fibonacci number

*/

int fib(int n)

{

 if (n <= 2) { return 1; }

 else return { fib(n - 1) + fib(n - 2); }

}

int main()

{

 cout << "Enter n: ";

 int n;

 cin >> n;

 int f = fib(n);

 cout << "fib(" << n << ") = " << f << endl;

 return 0;

}

ch11/fibtest.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Very simple and works perfectly,

but,

get out your stopwatches!

The Efficiency of Recursion

click

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Run this program with n = 3.

Too fast to time.

Try 15.

There appears to be a bit of a pause between outputs.

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Try n = 30, 40, 50.

There is a very noticeable pause between outputs
and it seems to be getting longer as n gets larger.

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

We will modify the code to output trace messages:

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Thinking Recursively – Palindromes

int fib(int n)

{

 cout << "Entering fib: n = " << n << endl;

 int f;

 if (n <= 2) { f = 1; }

 else { f = fib(n - 1) + fib(n - 2); }

 cout << "Exiting fib: n = " << n

 << " return value = " << f << endl;

 return f;

}

int main()

{

 cout << "Enter n: ";

 int n;

 cin >> n;

 int f = fib(n);

 cout << "fib(" << n << ") = " << f << endl;

 return 0;

}

ch11/fibtrace.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The output:

Enter n: 6

Entering fib: n = 6

Entering fib: n = 5

Entering fib: n = 4

Entering fib: n = 3

Entering fib: n = 2

Exiting fib: n = 2 return value = 1

Entering fib: n = 1

Exiting fib: n = 1 return value = 1

Exiting fib: n = 3 return value = 2

Entering fib: n = 2

Exiting fib: n = 2 return value = 1

Exiting fib: n = 4 return value = 3

Entering fib: n = 3

Entering fib: n = 2

Exiting fib: n = 2 return value = 1

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Entering fib: n = 1

Exiting fib: n = 1 return value = 1

Exiting fib: n = 3 return value = 2

Exiting fib: n = 5 return value = 5

Entering fib: n = 4

Entering fib: n = 3

Entering fib: n = 2

Exiting fib: n = 2 return value = 1

Entering fib: n = 1

Exiting fib: n = 1 return value = 1

Exiting fib: n = 3 return value = 2

Entering fib: n = 2

Exiting fib: n = 2 return value = 1

Exiting fib: n = 4 return value = 3

Exiting fib: n = 6 return value = 8

fib(6) = 8

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

This can be shown more clearly as a call tree:

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Notice that this shows that the same values,

for example, fib(2), are computed

over
and over
and over
and over

and…

This is why this recursion is inefficient.

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The iterative solution is best for Fibonacci numbers:

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Efficiency of Recursion

#include <iostream>

using namespace std;

/**

 Computes a Fibonacci number.

 @param n an integer

 @return the nth Fibonacci number

*/

int fib(int n)

{

 if (n <= 2) { return 1; }

 int fold = 1;

 int fold2 = 1;

 int fnew;

 for (int i = 3; i <= n; i++)

 {

 fnew = fold + fold2;

 fold2 = fold;

 fold = fnew;

 }

 return fnew;

}

ch11/fibloop.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Efficiency of Recursion

int main()

{

 cout << "Enter n: ";

 int n;

 cin >> n;

 int f = fib(n);

 cout << "fib(" << n << ") = " << f << endl;

 return 0;

}

ch11/fibloop.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

So is the iterative solution always
better than the recursive solution?

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Look at the iterative palindrome solution:

The Efficiency of Recursion

bool is_palindrome(string s)

{

 int start = 0;

 int end = s.length() - 1;

 while (start < end)

 {

 if (s[start] != s[end]) { return false; }

 start++;

 end--;

 }

 return true;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Both the iteration and the recursion
run at about the same speed.

If a palindrome has n characters,

the iteration executes the loop n/2 times.

and
the recursive solution calls itself n/2 times,

because two characters are removed in each step.

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

In such a situation, the iterative solution tends to be a bit faster,
because every function call takes

a certain amount of processor time
(and a recursive function call is a function call).

In principle, it is possible for a smart compiler to avoid

recursive function calls altogether if they follow simple patterns,
but most compilers don’t do that.

From that point of view,

an iterative solution is preferable.

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

However,
recursive solutions are
easier to understand

and implement correctly
than their iterative counterparts.

There is a certain elegance and economy of thought to
recursive solutions that makes them more appealing.

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

As L. Peter Deutsch

 (computer scientist and creator of the Ghost Script
interpreter for the PostScript graphics description language)

puts it:

To iterate is human,
to recurse, divine.

The Efficiency of Recursion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Now for a problem that would be
difficult to program with an iterative solution:

permutations.

Permutations

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

A permutation is simply a rearrangement of the letters.

For example, the string "eat" has six permutations
(including the original string itself):

"eat"
"eta"
"aet"
"ate"
"tea"
"tae“

(no one said they have to be real words!)

Permutations

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

We would like to write a function that generates
all permutations of a string.

For example here we use it for the string “eat”:

vector<string> v = generate_permutations("eat");

for (int i = 0; i < v.size(); i++)

{

 cout << v[i] << endl;

}

Permutations

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Now you need a way to generate the permutations recursively.

Consider the string "eat" and simplify the problem.

First, generate all permutations
that start with the letter 'e',

then those that start with 'a',
and finally those that start with 't'.

Permutations

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

How do you generate the permutations that start with 'e'?

You need to know the permutations of the substring "at".

But that’s the same problem

—to generate all permutations—

with a simpler input, namely the shorter string "at".

Permutations

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using recursion generates
the permutations of the substring "at".

You will get the strings

"at"
"ta"

Permutations

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

For each result of the simpler problem,
add the letter 'e' in front.

Now you have all permutations of

"eat" that start with 'e', namely

"eat"
"eta"

Permutations

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Next, turn your attention to the permutations
of "eat" that start with 'a'.

You must create the permutations

of the remaining letters, "et", namely
"et"
"te“

Add the letter 'a' to the front of the strings and obtain

"aet"
"ate"

Permutations

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Generate the permutations that
start with 't' in the same way.

Permutations

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Notice that you will use a loop to iterate through

 the character positions of the word
 Each loop iteration creates a shorter word that

 omits the current position:

vector<string> generate_permutations(string word)

{

 vector<string> result;

 ...

 for (int i = 0; i < word.length(); i++)

 {

 string shorter_word = word.substr(0, i) + word.substr(i + 1);

 ...

 }

 return result;

}

Permutations

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 The next step is to compute the
permutations of the shorter word.

vector<string> shorter_permutations =

generate_permutations(shorter_word);

For each of the shorter permutations, add the omitted letter:

for (int j = 0; j < shorter_permutations.size(); j++)

{

 string longer_word = word[i] + shorter_permutations[j];

 result.push_back(longer_word);

}

Permutations

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 When does the recursion stop?

The simplest possible string is the empty string,
which has a single permutation—itself.

vector<string> generate_permutations(string word)

{

 vector<string> result;

 if (word.length() == 0)

 {

 result.push_back(word);

 return result;

 }

 ...

}

Permutations

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Could you generate the permutations without recursion?

There is no obvious way of writing a loop
that iterates through all permutations.

For generating permutations,

it is much easier to use
recursion than

iteration.

The code:

Permutations

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Permutations

#include <iostream>

#include <string>

#include <vector>

using namespace std;

/**

 Generates all permutations of the characters in a string.

 @param word a string

 @return a vector that is filled with all permutations of the word

*/

vector<string> generate_permutations(string word)

{

 vector<string> result;

 if (word.length() == 0)

 {

 result.push_back(word);

 return result;

 }

 for (int i = 0; i < word.length(); i++)

 {

 string shorter_word = word.substr(0, i)+ word.substr(i + 1);

 vector<string> shorter_permutations =

 generate_permutations(shorter_word);

ch11/permute.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Permutations

 for (int j = 0; j < shorter_permutations.size(); j++)

 {

 string longer_word = word[i] + shorter_permutations[j];

 result.push_back(longer_word);

 }

 }

 return result;

}

int main()

{

 cout << "Enter a string: ";

 string input;

 getline(cin, input);

 vector<string> v = generate_permutations(input);

 for (int i = 0; i < v.size(); i++)

 {

 cout << v[i] << endl;

 }

 return 0;

}

ch11/permute.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

CHAPTER SUMMARY

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

CHAPTER SUMMARY

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

End Chapter Eleven

Slides by Evan Gallagher & Nikolay Kirov

