
C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Ten: Inheritance, Part I

Slides by Evan Gallagher & Nikolay Kirov

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

• To understand the concepts of inheritance and

 polymorphism

• To learn how to inherit and override member functions

Chapter Goals

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 I did some research

Inheritance Hierarchies

Maybe this will convince you...

 (I told you I have an onboard computer.)

 , yes, on the web

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 – I am part of a grand Hierarchy!

Inheritance Hierarchies

Not only am I beautiful, shiny and new …

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Inheritance Hierarchies

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Inheritance Hierarchies

 I AM

 ROYALTY.

 I have an ancestry!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Shovels, rakes, and clippers all perform gardening tasks.

They can be considered as specialized versions

of the general ‘gardening tool’ type.

Inheritance Hierarchies

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 In object-oriented design,

inheritance is a relationship between

a more general class (called the base class)

and a more specialized class (called the derived class).

 The derived class inherits data and

behavior from the base class.

Inheritance Hierarchies

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Just as I inherited my ROYALNESS.

Inheritance Hierarchies

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

IS-A

Inheritance

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 All cars are vehicles.

(This is correct and good English.)

Inheritance: The IS-A Relationship

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 All cars IS-A vehicles.

(Correct and … um … English?)

Inheritance: The IS-A Relationship

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

You may recall the UML notation HAS-A for containment.

IS-A

denotes inheritance.

Inheritance: The IS-A Relationship

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 All cars IS-A vehicles.

 (Correct…

 …when speaking object ively)

Inheritance: The IS-A Relationship

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

All Cars are Vehicles.

All Motorcycles are Vehicles.

All Sedans are Vehicles.

Inheritance: The IS-A Relationship

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Vehicles is the base class.

Car is a derived class.

Truck derives from Vehicle.

Inheritance: The IS-A Relationship

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

SUV derives from Car,

which derives from Vehicle.

Inheritance: The IS-A Relationship

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Truck IS-A Vehicle.

SUV IS-A Car.

Inheritance: The IS-A Relationship

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Everything about being

a Vehicle is inherited by

Cars and Trucks and

SUVs.

Inheritance: The IS-A Relationship

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Those things specific

to Cars are only

inherited by Sedans

and SUVs.

Inheritance: The IS-A Relationship

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

I inherited my ROYALNESS from my

parents who inherited it from their parents.

Inheritance Hierarchies

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

I’m a special version of my base class.

Inheritance Hierarchies

I’m very special.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Suppose we have an algorithm that
manipulates a Vehicle object.

 Since a car IS-A vehicle, we can supply
a Car object to such an algorithm,

and it will work correctly.

The Substitution Principle

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Substitution Principle

 The substitution principle states

that you can always use a derived-class object

when a base-class object is expected.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

If it was good enough for Mama,

The Substitution Principle

 it’s good enough for me.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Substitution Principle

 Did you know you have already

been working with class hierarchies?

(No! Really?)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Substitution Principle

 Remember your friends cin and cout?

(Yes.)

Their types are in an inheritance chain.

(Chains? Like prisoners?)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Substitution Principle

No, silly.

That’s just another phrase for inheritance hierarchy.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Substitution Principle

Look:

void process_input(istream& in);

You can call this function with
an ifstream object or with an istream object.

Why?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Substitution Principle

Because istream is more general than ifstream.

void process_input(istream& in);

This works by inheritance:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The C++ Stream Hierarchy

istream is the base class of ifstream.

ifstream inherits from istream.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Quiz Time

OK.

QUIZ TIME!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Quiz Time

OK.

QUIZ TIME!

Everyone likes taking quizzes.

So let’s take one.

(Oh no!)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Quiz Time

 You don’t like taking quizzes?

 (Not really …)

OK

Let’s create a Quiz Question hierarchy.

(Whew!)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Design Phase of Question Program

 We will try to make this as general as we can because

 often quizzes consist of different kinds of questions:

 (We like multiple guess questions.)

• Fill-in-the-blank

• Choice (single or multiple)

• Numeric
(we’ll allow approximate answers to be OK)

• Free response

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Design Phase of Question Program

 Here is the UML diagram that resulted from our analysis:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Base Class: Question

At the root of this hierarchy is the Question type.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Base Class: Question

 We want a object of Question type to work like this:

 First, the programmer sets the question text

and the correct answer in the Question object.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Base Class: Question

 Then, when it’s time to run the testing program

with a user taking the test, the programmer
asks the Question to display the text of the question:

Who was the inventor of C++?

The Question object

displays this

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Who was the inventor of C++?

Your answer: Bjarne Stroustrup

true

The Base Class: Question

That programmer then gets the use’s response

and passes it to the Question object for evaluation:

The Question object

displays this

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Base Class: Question – Member Variables

To work as shown, a Question object would contain:

• The question’s text

– string text;

• The correct answer

– string answer;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Base Class: Question – Constructor

– string text;

– string answer;

 What initial values should these have?

 What could possibly be a reasonable initial value?

 And – we’ll write mutators to allow setting them later.

 So a default Question constructor that does nothing is fine.

 The string class constructor gives us empty strings.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Base Class: Question – Accessors

A Question object should be able to:

• Display its text

– void display() const;

• Check whether a given response is a correct answer

– bool check_answer(string response) const;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Base Class: Question – Mutators

And have these mutators:

• Set the question’s text

– void set_text(string question_text);

• Set the correct answer

– void set_answer(string correct_response);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Base Class: Question –

class Question

{

public:

 Question();

 void set_text(string question_text);

 void set_answer(string correct_response);

 bool check_answer(string response) const;

 void display() const;

private:

 string text;

 string answer;

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Question Class Test Program

#include <iostream>

#include <sstream>

#include <string>

using namespace std;

class Question

{

public:

 /**

 Constructs a question with empty text and answer.

 */

 Question();

Here’s a complete program

to test our Question class.

ch10/quiz1/test.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Question Class Test Program

 /**

 @param question_text the text of this question

 */

 void set_text(string question_text);

 /**

 @param correct_response the answer to this question

 */

 void set_answer(string correct_response);

 /**

 @param response the response to check

 @return true if the response was correct,false

 otherwise

 */

 bool check_answer(string response) const;

ch10/quiz1/test.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Question Class Test Program

 /**

 Displays this question.

 */

 void display() const;

private:

 string text;

 string answer;

};

Question::Question()

{

}

void Question::set_text(string question_text)

{

 text = question_text;

}

ch10/quiz1/test.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Question Class Test Program

void Question::set_answer(string correct_response)

{

 answer = correct_response;

}

bool Question::check_answer(string response) const

{

 return response == answer;

}

void Question::display() const

{

 cout << text << endl;

}

ch10/quiz1/test.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Question Class Test Program

int main()

{

 string response;

 // Show Boolean values as true, false

 cout << boolalpha;

 Question q1;

 q1.set_text("Who was the inventor of C++?");

 q1.set_answer("Bjarne Stroustrup");

 q1.display();

 cout << "Your answer: ";

 getline(cin, response);

 cout << q1.check_answer(response) << endl;

 return 0;

}

ch10/quiz1/test.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

boolalpha

Did you notice this in the code?

 // Show Boolean values as true, false

 cout << boolalpha;

The boolalpha manipulator causes Boolean values

to be displayed as the output strings:

 "true" for true

and "false" for false

 – otherwise, numbers would be displayed.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes

 Now for those different kinds of questions.

All of the different kinds IS-A Question

so we code by starting with the base class (Question)

and then we write code for what makes them
special versions of more general Question type.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

I know about being special.

Implementing Derived Classes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes

 Through inheritance, each of these types will have the data
members and member functions set up in class Question.

– plus “specialness-es”

(We don’t rewrite the member functions)

(code reuse in action – all right!)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

That’s me!

Implementing Derived Classes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes

We will start with the “choice question” kind of question:

class ChoiceQuestion : public Question

{

public:

 // New and changed member

 // functions will go here

private:

 // Additional data members

 // will go here

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes

The : symbol denotes inheritance.

class ChoiceQuestion : public Question

{

public:

 // New and changed member

 // functions will go here

private:

 // Additional data members

 // will go here

};

I’m a

derived

class

I’m his parent:

the base class

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes

The keyword public makes sure this is an IS-A relationship.

class ChoiceQuestion : public Question

{

public:

 // New and changed member

 // functions will go here

private:

 // Additional data members

 // will go here

};

ChoiceQuestion IS-A Question

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes

 We are telling the compiler to start with the
Question class and add these things to it.

class ChoiceQuestion : public Question

{

public:

 // New and changed member

 // functions will go here

private:

 // Additional data members

 // will go here

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes – Analysis of the Problem

So what are these new things?

How does a ChoiceQuestion differ from its base class?

It’s use in the interaction with a user will be different:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes – Analysis of the Problem

 After a programmer has set the question

text and the several multiple choice answers
 the ChoiceQuestion object is asked to display:

The Question object

displays all this

In which country was the inventor of C++ born?

1: Australia

2: Denmark

3: Korea

4: United States

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes – Analysis of the Problem

 The programmer then gets the user’s input,

 and sends it to the ChoiceQuestion

object to see if it is correct.

In which country was the inventor of C++ born?

1: Australia

2: Denmark

3: Korea

4: United States

Your answer: 2

true

The Question object

displays this

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes – Coding

 The code will have to make ChoiceQuestion

be a specialized form of a Question object.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes

ChoiceQuestion must have:

• Storage for the various choices for the answer

– Question has the text and correct answer, not these

• A member function for adding another choice

• A display function

– The designer of the Question class could not have

known how to display this sort of multiple choice

question. It only has the question itself, not the choices.

– In the ChoiceQuestion class you will have to rewrite

the display function display.

• This is called overriding a member function.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes – Coding

 After specifying the class you are inheriting from,

you only write the differences:

class ChoiceQuestion : public Question

{

public:

 ChoiceQuestion();

 void add_choice(string choice, bool correct);

 void display() const;

private:

 vector<string> choices;

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes – Coding

Where is the set_text member function?

Where is the string text; data member?

Right there

class ChoiceQuestion : public Question

{

public:

 ChoiceQuestion();

 void add_choice(string choice, bool correct);

 void display() const;

private:

 vector<string> choices;

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

class Question

{

public:

 Question();

 void set_text(string question_text);

 void set_answer(string correct_response);

 bool check_answer(string response) const;

 void display() const;

private:

 string text;

 string answer;

};

Derived Classes

class ChoiceQuestion : public Question

{

public:

 ChoiceQuestion();

 void add_choice(string choice, bool correct);

 void display() const;

private:

 vector<string> choices;

};

ChoiceQuestion is one type,

made of two subtypes.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

class Question

{

public:

 Question();

 void set_text(string question_text);

 void set_answer(string correct_response);

 bool check_answer(string response) const;

 void display() const;

private:

 string text;

 string answer;

};

Derived Classes

class ChoiceQuestion : public Question

{

public:

 ChoiceQuestion();

 void add_choice(string choice, bool correct);

 void display() const;

private:

 vector<string> choices;

};

It is based on the Question

 type so it has those parts.

members from
class

Question

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

class Question

{

public:

 Question();

 void set_text(string question_text);

 void set_answer(string correct_response);

 bool check_answer(string response) const;

 void display() const;

private:

 string text;

 string answer;

};

Derived Classes

class ChoiceQuestion : public Question

{

public:

 ChoiceQuestion();

 void add_choice(string choice, bool correct);

 void display() const;

private:

 vector<string> choices;

};

And, added to those parts

from the Question type,

it has its own specializations

(its specialness-es).

specializations

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

class Question

{

public:

 Question();

 void set_text(string question_text);

 void set_answer(string correct_response);

 bool check_answer(string response) const;

 void display() const;

private:

 string text;

 string answer;

};

Derived Classes

v

class ChoiceQuestion : public Question

{

public:

 ChoiceQuestion();

 void add_choice(string choice, bool correct);

 void display() const;

private:

 vector<string> choices;

};

to make one type:

ChoiceQuestion

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Derived Classes – Syntax

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes – Coding

 The derived class inherits all data members

 and all functions that it does not override.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes – Coding

 But…

private means private.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes – Coding

 Consider:

Choice_question choice_question;

choice_question.set_answer("2");

 (OK, a public method in a derived part.)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes – Coding

 How about:

Choice_question choice_question;

choice_question.answer = "2";

 (Well, it did inherit that data member …)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes – Coding

 No, private means private!

Choice_question choice_question;

choice_question.answer = "2";

// will not compile - private

(OK – private means private even if inherited.)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes – Coding

 This means that when you are writing the
ChoiceQuestion

member functions, you cannot directly access
any private data members in Question.

 (Oh, dear. What to do?)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes – Coding

 A good design would be

for this function to take a choice

and somehow an indication that this

 choice is the correct answer.

 (bool! bool! bool!)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void ChoiceQuestion::add_choice(string choice, bool correct)

{

 choices.push_back(choice);

 if (correct)

 {

 // Convert choices.size() to string

 ostringstream stream;

 stream << choices.size();

 string num_str = stream.str();

 // Set num_str as the answer

 ...

 }

}

Implementing Derived Classes – Coding

Very good:

 ...but

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes – Coding

Oh dear

 answer is private!

void ChoiceQuestion::add_choice(string choice, bool correct)

{

 choices.push_back(choice);

 if (correct)

 {

 // Convert choices.size() to string

 ostringstream stream;

 stream << choices.size();

 string num_str = stream.str();

 // Set num_str as the answer

 ...

 }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Derived Classes – Coding

Happily, the designer of Question provided accessors!

void ChoiceQuestion::add_choice(string choice, bool correct)

{

 choices.push_back(choice);

 if (correct)

 {

 // Convert choices.size() to string

 ostringstream stream;

 stream << choices.size();

 string num_str = stream.str();

 // Set num_str as the answer

 set_answer(num_str);
 }

} implicit parameter.set_answer(num_str);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

class ChoiceQuestion : Question

{

public:

 ChoiceQuestion();

 void add_choice(string choice, bool correct);

 void display() const;

private:

 vector<string> choices;

};

Common Error

 Here is the class definition for ChoiceQuestion again.

 It’s wrong

 Can you find it?

 – we made a small mistake.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error: Private Inheritance

 Aha!

class ChoiceQuestion : Question

{

public:

 ChoiceQuestion();

 void add_choice(string choice, bool correct);

 void display() const;

private:

 vector<string> choices;

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error: Private Inheritance

 If you do not specify public inheritance,

you get private inheritance and everything is a mess.

class ChoiceQuestion : private Question

{

public:

 ChoiceQuestion();

 void add_choice(string choice, bool correct);

 void display() const;

private:

 vector<string> choices;

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error: Private Inheritance

 If you do not specify public inheritance,

you get private inheritance and everything is a mess.

(Be careful, son!)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 You know all about private access:

 A derived class has no access to

the private data members of the base class.

Common Error: Replicating Base Class Members

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

ChoiceQuestion::ChoiceQuestion(string quest_txt)

{

 text = quest_txt;

}

But when some programmers encounter a compiler error,

They just start hacking.

Common Error: Replicating Base Class Members

they (not you, of course) don’t stop and THINK.

COMPILER ERROR: accessing private data member text

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error: Replicating Base Class Members

 And an “easy” fix seems to be to add the

data member that the compiler is complaining about.

ChoiceQuestion::ChoiceQuestion(string quest_txt)

{

 text = quest_txt;

}

COMPILER ERROR: accessing private data member text

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error: Replicating Base Class Members

 And an “easy” fix seems to be to add the

data member that the compiler is complaining about.

class ChoiceQuestion : public Question

{

...

private:

 vector<string> choices;

 string text;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error: Replicating Base Class Members

 Oh dear!

 TWO test data members!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error: Replicating Base Class Members

 One set by the constructor

 and the other displayed!

 Oh dear! Oh Dear! OH DEAR!!!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

End Chapter Ten: Inheritance, Part I

Slides by Evan Gallagher & Nikolay Kirov

