
C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Nine: Classes, Part I

Slides by Evan Gallagher & Nikolay Kirov

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

• To understand the concept of encapsulation

• To master the separation of interface and

implementation

• To be able to implement your own classes

Chapter Goals

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

I thought you considered me more

 than just a collection of parts.

I’m more than just functional.

Object-Oriented Programming

Am I just an object to you?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 – now will you love me for what I am?

Object-Oriented Programming

I have an onboard computer

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Did you know that you already are

an

Object Oriented Programmer?

(No way!)

Object-Oriented Programming

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Does string sound familiar?

(Yes…)

Object-Oriented Programming

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Does string sound familiar?

How about cin and cout?

(Yes, but...)

Object-Oriented Programming

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

An

Object Oriented Programmer

uses objects.

(Wow, I didn’t realize…)

Object-Oriented Programming

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 But…

a REAL

Object Oriented Programmer

designs and creates objects

and then uses them.

Object-Oriented Programming

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Yes, you are mostly

A Programmer Who Writes Functions

To Solve Sub-problems

 And that is very good!

Object-Oriented Programming

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 As programs get larger,
it becomes increasingly difficult

to maintain a large collection of functions.

 It often becomes necessary to use
the dreaded and deadly practice of

USING GLOBAL VARAIBLES

 (Don’t do it, son!)

Object-Oriented Programming

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Object-Oriented Programming

Global variables are

those defined outside of all

functions – so all functions

have access to them.

But…

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Object-Oriented Programming

When some part of the global data

needs to be changed:

to improve performance

or to add new capabilities,

a large number of functions
may be affected

and hope everything still works!

– you will have to rewrite them –

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Object-Oriented Programming

When some part of the global data

needs to be changed:

to improve performance

or to add new capabilities,

a large number of functions
may be affected

and hope everything still works!

– you will have to rewrite them –

Ouch!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Computer scientists noticed that most often functions

were working on related data so they invented:

Objects

 where they keep the data and the

functions that work with them together.

 No more global variables – Hurray!

Objects to the Rescue

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

objects

Object Oriented Programming

(OOP)

(Not to be confused with oops!, the exclamation.)

Objects to the Rescue

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Some new terminology.

The data stored in an object are called:

data members

The functions that work on data members are:

member functions

No more variables and functions –

separately.

Objects to the Rescue

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Objects to the Rescue

Figure out which functions go with which data.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Objects to the Rescue

Create an object for each set of data.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Objects to the Rescue

Create another object for another set.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Objects to the Rescue

And now, a third object.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Objects to the Rescue

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Get rid of those global variables.

Objects to the Rescue

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Objects to the Rescue

From now on, we’ll have only objects.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Objects to the Rescue

Ah.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The data members are

encapsulated

 They are hidden from other parts of the program and

accessible only through their own member functions.

Encapsulation

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Now when we want to change the way

that an object is implemented,

only a small number of

functions need to be changed,

and they are the ones in the object.

Encapsulation

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Because most real-world programs need

to be updated often during their lifetime,

this is an important advantage

of object-oriented programming.

Program evolution becomes much more manageable.

(Ah …)

Encapsulation

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

When you use string or stream objects,

you did not know their data members.

Encapsulation means that they are hidden from you.

(That’s good – you might have messed them up.)

Encapsulation

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

But you were allowed to call member functions

 such as substr,

and you could use operators such as

[] (subscript for vectors)

or

>> (input stream for objects of ifstream class)

(which are actually functions).

You were given an interface to the object.

Encapsulation and the Interface

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 All those member functions and operators

are the interface to the object.

Encapsulation and the Interface

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 I wonder how the engine really works,

 and the speedometer,

 and the gas gauge,

 and that little thingy over there…

Encapsulation and the Interface

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 And I better stop thinking about all this

or I won’t be able to drive!

Encapsulation and the Interface

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Don’t get me started…

Object-Oriented Programming

So you like my interface.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

In C++, a programmer doesn’t implement a single object.

Instead, the programmer implements a class.

Classes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

A class describes a set of objects with the same behavior.

You would create the Car class to represent cars as objects.

Classes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Object-Oriented Programming

An object ?!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

To define a class,

you must specify the behavior

by providing implementations for the member functions,

and by defining the data members for the objects …

Defining Classes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Defining Classes

I’m a little early – sorry.

(the exclamation),

I, camel, will be back later.

Oops!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Again, to define a class:

• Implement the member functions to specify the behavior.

• Define the data members to hold the object’s data.

Classes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

We will design a cash register object.

Designing the Class

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 By observing a real cashier working,

we realize our cash register design needs

 member functions to do the following:

• Clear the cash register to start a new sale.

• Add the price of an item.

• Get the total amount owed and the count

 of items purchased.

Designing the Class

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

These activities will be our public interface.

 The public interface is specified by

declarations in the class definition.

The data members are defined there also.

Classes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

To define a class you write:

Classes

class NameOfClass

{

public:

 // the public interface

private:

 // the data members

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Any part of the program should be able to call the

 member functions – so they are in the public section.

 Data members are defined in the private section of the class.

Only member functions of the class can access them.

They are hidden from the rest of the program.

Classes

class NameOfClass

{

public:

 // the public interface

private:

 // the data members

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Here is the C++ syntax for the CashRegister class definition:

Classes

class CashRegister

{

public:

 void clear();

 void add_item(double price);

 double get_total() const;

 int get_count() const;

private:

 // data members will go here

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 The public interface has the four activities

that we decided this object should support.

Classes

class CashRegister

{

public:

 void clear();

 void add_item(double price);

 double get_total() const;

 int get_count() const;

private:

 // data members will go here

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Notice that these are declarations.

They will be defined later.

Classes

class CashRegister

{

public:

 void clear();

 void add_item(double price);

 double get_total() const;

 int get_count() const;

private:

 // data members will go here

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Defining Classes

I’m here for style purposes.

I’m back.

Hi.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Defining Classes

Remember, earlier, when I said, “I, camel, will be back later.”

That was to help you with the style for class names:

 – well, actually it’s CAMEL CASE. CAMEL BACK

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Defining Classes

I personally think CAMEL BACK is

 more stylish than CAMEL CASE.

And I consider my style to be immaculate.

 at me of course: Just look…

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Defining Classes

 Look at my head and my humps.
 (Very cute!)

Each “word” should start with an uppercase letter.

 That’s how your class names should look:

 (Very good style!)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Defining Classes

 What should you choose for the name of the class to represent me?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Defining Classes

Two Hump Camel class

{

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Defining Classes

I’ll be going now…

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Defining Classes

but don’t forget: class names should be…

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Defining Classes

…CAMEL CASE

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

There are two kinds of member functions:

• Mutators

• Accessors

Methods

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 A mutator is a function that

modifies

the data members of the object.

Mutators

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

CashRegister has two mutators:

Mutators

class CashRegister

{

public:

 void clear();

 void add_item(double price);

 double get_total() const;

 int get_count() const;

private:

 // data members will go here

};

clear

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

CashRegister has two mutators:

Mutators

class CashRegister

{

public:

 void clear();

 void add_item(double price);

 double get_total() const;

 int get_count() const;

private:

 // data members will go here

};

clear and add_item.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 You call the member functions by
first creating a variable of type CashRegister

and then using the dot notation:

 Because these are mutators, the data

stored in the class will be changed.

Mutators

CashRegister register1;

...

register1.clear();

...

register1.add_item(1.95);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Mutators

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 An accessor is a function that

queries

 a data member of the object.

 It returns the value of a data member to its caller.

Accessors

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

CashRegister has two accessors:

Accessors

class CashRegister

{

public:

 void clear();

 void add_item(double price);

 double get_total() const;

 int get_count() const;

private:

 // data members will go here

};

get_total

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

CashRegister has two accessors:

Accessors

class CashRegister

{

public:

 void clear();

 void add_item(double price);

 double get_total() const;

 int get_count() const;

private:

 // data members will go here

};

and get_count.

get_total

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Because accessors should never change the data
in an object, you should make them const .

Accessors

class CashRegister

{

public:

 void clear();

 void add_item(double price);

 double get_total() const;

 int get_count() const;

private:

 // data members will go here

};

not here

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

This statement will print the current total:

Accessors

cout << register1.get_total() << endl;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Mutators and Accessors: The Interface

The interface for our class:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Can you find the error?

Common Error:

class MysteryClass

{

public:

 ...

private:

 ...

}

int main()

{

 ...

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Don’t forget that semicolon!

Common Error: Missing Semicolon

class MysteryClass

{

public:

 ...

private:

 ...

} // Forgot semicolon

int main()

{

 // Many compilers report

 // that error here in main!

 ...

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Encapsulation

 Let’s continue with the design of CashRegister.

 Each CashRegister object must store the total

price and item count of the sale that is currently rung up.

 We have to choose an appropriate data representation.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Encapsulation

This is pretty easy:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Encapsulation

class CashRegister

{

public:

 // interface

private:

 int item_count;

 double total_price;

};

item_count for the count

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Encapsulation

total_price for the total

class CashRegister

{

public:

 // interface

private:

 int item_count;

 double total_price;

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Class Definition Syntax

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Encapsulation

CashRegister register1;

CashRegister register2;

Every CashRegister object has

a separate copy of these data members.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Encapsulation

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Encapsulation

int main()

{

 ...

 cout << register1.item_count;

 // Error—use get_count() instead

 ...

}

Because the data members are private, this won’t compile:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Encapsulation

A good design principle:

Never have any public data members.

Son, consider that an addition to the RULES!

 I know you can make data members public,

but don’t.

Just don’t do it!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Encapsulation and Methods as Guarantees

One benefit of the encapsulation mechanism is

we can make guarantees.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Encapsulation and Methods as Guarantees

We can write the mutator for item_count so that

item_count cannot be set to a negative value.

If item_count were pubic, it could be directly

set to a negative value by some misguided

(or worse, devious)

programmer.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Encapsulation and Methods as Guarantees

There is a second benefit of encapsulation that is

particularly important in larger programs:

Things Change.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Encapsulation and Methods as Guarantees

 Well, that’s not really a benefit.

Things change means:

Implementation details often need to change over time …

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Encapsulation and Methods as Guarantees

You want to be able to make your classes more

efficient or more capable, without affecting the

programmers that use your classes.

The benefit of encapsulation is:

As long as those programmers do not depend

on the implementation details, you are free to

change them at any time.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Interface

 The interface should not change even

if the details of how they are implemented change.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Interface

 A driver switching to an electric car

does not need to relearn how to drive.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 I’m shocked!

Object-Oriented Programming

How dare you compare my interface with that, that…

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing the Member Functions

Now we have what the interface does,

and what the data members are,

so what is the next step?

Implementing the member functions.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing the Member Functions

The details of the add_item member function:

void add_item(double price)

{

 item_count++;

 total_price = total_price + price;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing the Member Functions

Unfortunately this is NOT the add_item member function.

It is a separate function, just like you used to write.

It has no connection with the CashRegister class

void add_item(double price)

{

 item_count++;

 total_price = total_price + price;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing the Member Functions

 To specify that a function is a member function

of your class you must write

 CashRegister::

in front of the member function’s name:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing the Member Functions

 To specify that a function is a member function

of your class you must write

 CashRegister::

in front of the member function’s name:

void CashRegister::add_item(double price)

{

 item_count++;

 total_price = total_price + price;

}

Not here

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing the Member Functions

 Use CashRegister:: only when defining the

function – not in the class definition.

class CashRegister

{

public:

 ...

private:

 ...

};

void CashRegister::add_item(double price)

{

 item_count++;

 total_price = total_price + price;

}

Not here

Only here

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implicit Parameters

Wait a minute.

We are changing data members …

BUT THERE’S NO VARIABLE TO BE FOUND!

Which variable is add_item working on?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implicit Parameters

Oh No! We’ve got two cash registers!

 CashRegister register2;

 CashRegister register1;

Which cash register is add_item working on?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implicit Parameters

When a member function is called:

 The variable to the left of the dot operator is

implicitly passed to the member function.

 In the example, register1 is the implicit parameter.

CashRegister register1;
...

register1.add_item(1.95);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implicit Parameters

The variable register1 is an implicit parameter.

register1.add_item(1.95);

void CashRegister::add_item(double price)

{

 implicit parameter.item_count++;

 implicit parameter.total_price =

 implicit parameter.total_price + price;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implicit Parameters

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implicit Parameters

 We’ll get back to this, later …

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Calling a Member Function from a Member Function

 Let’s add a member function that adds

multiple instances of the same item.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Calling a Member Function from a Member Function

Like when we are programming…

and we get a dozen strong, black coffees to go.

12 @

¥500

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Calling a Member Function from a Member Function

We have already written the add_item member function

and

the same good design principle of

code reuse with functions

is still fresh in our minds, so:

void CashRegister::add_items(int qnt, double prc)

{

 for (int i = 1; i <= qnt; i++)

 {

 add_item(prc);

 }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Calling a Member Function from a Member Function

When one member function calls another member function

on the same object, you do not use the dot notation.

void CashRegister::add_items(int qnt, double prc)

{

 for (int i = 1; i <= qnt; i++)

 {

 add_item(prc);

 }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Calling a Member Function from a Member Function

 So how does this work?

Remember our friend: implicit parameter !

It’s as if it were written to the left of the dot

 (which also isn’t there)

register1.add_items(6,0.95);

void CashRegister::add_items(int qnt, double prc)

{

 for (int i = 1; i <= qnt; i++)

 {

 implicit parameter.add_item(prc);

 }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Calling a Member Function from a Member Function

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Cash Register Program

#include <iostream>

#include <iomanip>

using namespace std;

/**

 A simulated cash register that tracks

 the item count and the total amount due.

*/

class CashRegister

{

public:

ch09/registertest1.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Cash Register Program

class CashRegister

{

public:

 /**

 Clears the item count and the total.

 */

 void clear();

 /**

 Adds an item to this cash register.

 @param price the price of this item

 */

 void add_item(double price);

ch09/registertest1.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Cash Register Program

 /**

 @return the total amount of the current sale

 */

 double get_total() const;

 /**

 @return the item count of the current sale

 */

 int get_count() const;

private:

 int item_count;

 double total_price;

};

ch09/registertest1.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Cash Register Program

 void CashRegister::clear()

 {

 item_count = 0;

 total_price = 0;

 }

 void CashRegister::add_item(double price)

 {

 item_count++;

 total_price = total_price + price;

 }

 double CashRegister::get_total() const

 {

 return total_price;

 }

ch09/registertest1.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Cash Register Program

 int CashRegister::get_count() const

 {

 return item_count;

 }

 /**

 Displays the item count and total

 price of a cash register.

 @param reg the cash register to display

 */

 void display(CashRegister reg)

 {

 cout << reg.get_count() << " $“

 << fixed << setprecision(2)

 << reg.get_total() << endl;

 }

ch09/registertest1.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Cash Register Program

int main()

{

 CashRegister register1;

 register1.clear();

 register1.add_item(1.95);

 display(register1);

 register1.add_item(0.95);

 display(register1);

 register1.add_item(2.50);

 display(register1);

 return 0;

}

ch09/registertest1.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

const Correctness

 You should declare all accessor functions
in C++ with the const reserved word.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

const Correctness

But let’s say, just for the sake of checking things out

– you would never do it yourself, of course –

suppose you did not make display const:

class CashRegister

{

 void display(); // Bad style—no const

 ...

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

const Correctness

This will compile with no errors.

class CashRegister

{

 void display(); // Bad style—no const

 ...

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

const Correctness

But son, it’s not just about you.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

const Correctness

 What happens when some other, well intentioned, good

design-thinking programmer uses your class,

an array of them actually, in a function.

 Very correctly she makes the array const.

void display_all(const CashRegister[] registrs)

{

 for (int i = 0; i < NREGISTERS; i++)

 {

 registrs[i].display();

 }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

const Correctness

Son, look what you’ve done!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

const Correctness

The compiler (correctly) notices that
registrs[i].display()

is calling a NON-CONST display method

on a CONST CashRegister object.

void display_all(const CashRegister[] registrs)

{

 for (int i = 0; i < NREGISTERS; i++)

 {

 registrs[i].display();

 }

}
compiler error

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

const Correctness

Son…

Yes, it’s actually her fault for not reading your code closely

enough but that is no excuse for your bad behavior.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

End Chapter Nine: Classes, Part II

Slides by Evan Gallagher & Nikolay Kirov

