
C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Chapter Eight: Streams, Part I 

Slides by Evan Gallagher & Nikolay Kirov 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

• To be able to read and write files 

Chapter Goals 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Streams 

A very famous bridge 

over a “stream” 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Streams 

A ship 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Streams 

in the stream 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Streams 

one at a time 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Streams 

A stream of ships 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Streams 

an input stream to 

that famous city 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Streams 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Streams 

No more ships in the stream at this time  

Let’s process what we just input…   



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

• The C++ input/output library is based on the concept of 

streams. 

• An input stream is a source of data. 

• An output stream is a destination for data.  

• The most common sources and destinations for data are 

the files on your hard disk. 

Reading and Writing Files 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Streams 

  

This is a stream of characters. It could be from 

the  keyboard  or  from a file. Each of these is 

just a character - even these:  3  -23.73 which, 

when input, can be converted to: ints or doubles 

or whatever type you like. 

(that was a  '\n'  at the end  of the last line) 

&*@&^#!%#$ (No, that was –not- a curse!!!!!!!!!! 

¥1,0000,0000 (price of a cup of coffee in Tokyo) 

Notice that all of this text is very plain -  No 

bold or green of italics – just characters – and 

whitespace (TABs, NEWLINES and, of course... the 

other one you can’t see: the space character: 

(another '\n') 

(&& another)    (more whitespace) and FINALLY: 

Aren't you x-STREAM-ly glad this animation is over? 

newline characters 

And there were no sound effects!!! 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 The stream you just saw in action is a plain text file. 

No formatting, no colors, no video or music 

       (or sound effects). 

 

 The program can read these sorts of plain text streams of 

characters from the keyboard, as has been done so far. 

Reading and Writing Files 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

You can also read from files stored on your hard disk: 
 

 from plain text files 

(as if the typing you saw had been stored in a file) 

(or you wanted to write those characters to a disk file). 

 

 from a file that has binary information 

(a binary file). 

Reading and Writing Files 

The picture of the ship in the stream 

of ships is stored as binary information. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

 

You will learn to read and write both kinds of files. 

 

Reading and Writing Files 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 To read or write disk files, you use variables (objects). 

 

 You use variables of type: 
 

  ifstream for input from plain text files. 

  ofstream for output to plain text files. 

  fstream for input and output from binary files. 

 

Reading and Writing Files 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

   To read anything from a file stream, 

you need to open the stream.  
 

(The same for writing.) 

Opening a Stream 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

   Opening a stream means associating 

your stream variable with the disk file. 

Opening a Stream 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

The first step in opening a file is 

 having the stream variable ready. 

 

Here’s the definition of an input 

stream variable named in_file: 

 

ifstream in_file; 

 

Looks suspiciously like every other 

variable definition you’ve done 

 – it is! 

Only the type name is new to you. 

Opening a Stream 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Suppose you want to read data from a file named 

input.dat located in the same directory as the program. 

 

 

All stream variables are objects so we will use a method. 

The open method does the trick: 

 

 

   in_file.open("input.dat"); 

 

Opening a Stream 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

   You use the name of the disk file 
only when you open the stream. 

 

 

    And the open method only accepts C strings. 
 

 

 

 

 

       

      (More about this later …) 

Opening a Stream 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

C++ for Everyone by Cay Horstmann 

Copyright © 2008 by John Wiley & Sons. All rights reserved 

File names can contain directory path information, such as: 
 

UNIX 

in_file.open("~/nicework/input.dat"); 
 

Windows 

in_file.open("c:\\nicework\input.dat"); 

Opening a Stream 

? 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

C++ for Everyone by Cay Horstmann 

Copyright © 2008 by John Wiley & Sons. All rights reserved 

File names can contain directory path information, such as: 
 

UNIX 

in_file.open("~/nicework/input.dat"); 
 

Windows 

in_file.open("c:\\nicework\\input.dat"); 

Opening a Stream 

When you specify the file name as a string literal, 

and the name contains backslash characters 
 

(as in a Windows path and filename), 

you must supply each backslash twice 
to avoid having escape characters in the string, 

like '\n'. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

If you ask a user for the filename, you would 

normally use a string variable to store their input. 

 

 
But the open method requires a C string. 

 

 

 

What to do? 

Opening a Stream 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

  Luckily most classes provide the methods we need: 
 

the string class has the c_str method 

 to convert the C++ string to a C string: 

 

 
 

Opening a Stream 

cout << "Please enter the file name:"; 

string filename; 

cin >> filename; 

ifstream in_file; 

in_file.open(filename.c_str()); 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

   The open method is passed C string 

version of the filename the user typed: 

 

 
 

Opening a Stream 

cout << "Please enter the file name:"; 

string filename; 

cin >> filename; 

ifstream in_file; 

in_file.open(filename.c_str()); 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 When the program ends, 

all streams that you have opened 
 

will be automatically closed. 

 

You can manually close a stream with the 
close member function: 

 
in_file.close(); 

Closing a Stream 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

    Manually closing a stream is only necessary 

if you want to open the file again in 
the same program run. 

Closing a Stream 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

    You already know how to read and write using files. 

 

 

Yes you do: 

 

string name; 

double value; 

in_file >> name >> value; 

 

 

      

Reading from a Stream 

cout? in_file? 

No difference when it comes to reading using  >>. 

See, I told you so! 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 
The >> operator returns a “not failed” condition, 

allowing you to combine an input statement and a test. 
A “failed” read yields a false 

and a “not failed” read yields a true. 

 

 
if (in_file >> name >> value) 

{ 

   // Process input 

} 
 

     Nice! 

Reading from a Stream 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

  You can even read ALL the data from a file 

because running out of things to read causes 

that same “failed state” test to be returned: 

 

 
while (in_file >> name >> value) 

{ 

   // Process input 

} 
 

           x-STREAM-ly    STREAM-lined 

        --- Cool! 

Reading from a Stream 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 
   The open method also sets a “not failed” condition. 

 It is a good idea to test for failure immediately: 

 

 
in_file.open(filename.c_str()); 
 

// Check for failure after opening 

if (in_file.fail()) { return 0; } 

 

 

      Silly user, 

      bad filename! 

Failing to Open 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

    Let’s review: 

 

   Do you already know everything about writing to files? 

 

 But you haven’t started showing writing to files! 

How can this be a review already? 

 

 

    But, of course, you already know! 

 

Writing to a Stream 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

    Here’s everything: 

 

 

 

 

 

 

ofstream out_file; 

out_file.open("output.txt"); 

if (in_file.fail()) { return 0; } 

out_file << name << " " << value << endl; 

 

out_file << "CONGRATULATIONS!!!" << endl; 

Writing to a Stream 

1. create output stream variable 

2. open the file 

3. check for failure to open 

5. congratulate self! 

4. write to file 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 
     

Working with File Streams 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 Functions need to be able to process files too, 
 

   and there’s an easy rule to follow: 

 

  As parameters, streams are 
 

ALWAYS passed by reference. 

 

 

 

(Did you notice that “ALWAYS”?) 

Passing Streams to Functions 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

  

A Programming Problem 

Why can I never find Ezmereldza? 

 

 

Ezmereldza? 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

  

A Programming Problem 

Why can I never find Ezmereldza? 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

  

A Programming Problem 

 

I have to help Sis pick a 

name for her baby 

I wish I could find some 

list somewhere… 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

  

A Programming Problem 

http://www.ssa.gov/OACT/babynames/ 

Please click this 

link for me 

I really need you to click 

that link up there. 

CLICK 

IT!!! 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

  

A Programming Problem: BABYNAMES 

thank you 

Now what? 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

   Let’s write a program that might 

help Ezmereldza help her sister. 

A Programming Problem: Baby Names 

thank you 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

 After copying the data from the Social 

Security Administration’s table to a text file, 

we analyze the format of the file. 

A Programming Problem: Baby Names 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

Each line in the file contains seven entries: 

• The rank (from 1 to 1,000) 

• The name, frequency, and percentage of the male name of 

that rank 

• The name, frequency, and percentage of the female name 

of that rank 

 

An example line from the file: 

 10 Joseph 260365 1.2681 Megan 160312 0.8 

A Programming Problem: Baby Names 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

    We will display the names of the top 50% 

of the names stored in our file of names. 

A Programming Problem: Baby Names 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 
 

To process each line, we first read the rank: 
 

int rank; 

in_file >> rank; 

 

We then read a set of three values for that boy’s name: 
 

string name; 

int count; 

double percent; 

in_file >> name >> count >> percent; 

 

Then we repeat that step for a girl’s name. 

A Programming Problem: Baby Names 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 
 

Repeating a process reminds us of a good design principle: 

 

Write a function to do this: 
 

 

string name; 

int count; 

double percent; 

in_file >> name >> count >> percent; 

A Programming Problem: Baby Names 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

 To stop processing after reaching 50%, we can add 

up the frequencies we read and stop when they reach 50%. 

 

   However, it turns out to be a bit simpler to have “total” 

variables for boys and girls and initialize these with 50. 

 

   Then we’ll subtract the frequencies as we read them. 

A Programming Problem: Baby Names 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

When the total for boys falls below 0, 

we stop printing boys’ names. 

 

Same for girls’ names 

 – which means this can be part of the function. 

 

 

 

When both totals fall below 0, we stop reading. 

A Programming Problem: Baby Names 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

 

 

 

You’ll get this when you read the code: 

A Programming Problem: Baby Names 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

ch08/babynames.cpp 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

A Programming Problem: Baby Names 

/** 

Reads name information, prints the name if total >= 0, and 

adjusts the total. 

@param in_file the input stream 

@param total the total percentage that should still be 

processed 

*/ 

void process_name(ifstream& in_file, double& total) 

{ 

   string name; 

   int count; 

   double percent; 

   in_file >> name >> count >> percent; 

   // Check for failure after each input 

   if (in_file.fail()) { return; } 

   if (total > 0) { cout << name << " "; } 

   total = total - percent; 

} 

ch08/babynames.cpp 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

A Programming Problem: Baby Names 

int main() 

{ 

   ifstream in_file; 

   in_file.open("babynames.txt"); 

   // Check for failure after opening 

   if (in_file.fail()) { return 0; } 

   double boy_total = 50; 

   double girl_total = 50; 

   while (boy_total > 0 || girl_total > 0) 

   { 

      int rank; 

      in_file >> rank; 

      if (in_file.fail()) { return 0; } 

      cout << rank << " "; 

      process_name(in_file, boy_total); 

      process_name(in_file, girl_total); 

      cout << endl; 

   } 
   return 0; 

} 

ch08/babynames.cpp 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

     There are more ways to read from stream 

variables than you have seen before, 

and there are some details you need to understand. 

 

 

 

 

 

These follow… 

 
   

Reading Text Input 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 
What really happens when reading a string? 

 
  string word; 

  in_file >> word; 

 

1. If any reading can be done at all, all whitespace is skipped 
(whitespace is this set: '\t' '\n' ' '). 

2. The first character that is not white space is added to the 
string word. More characters are added until either 

another white space character occurs, or the end of the 

file has been reached. 

Reading strings 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

It is possible to read a single character 

 – including whitespace characters. 

 
  char ch; 

  in_file.get(ch); 

 

The get method also returns the “not failed” condition so: 

 
while (in_file.get(ch)) 

{ 

   // Process the character ch 

} 

Reading Characters 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 
The get method makes it possible to process 

a whole file one character at a time: 

 
 char ch; 

 while (in_file.get(ch)) 

 { 

     // Process the character ch 

 } 

Reading the Whole File Character by Character 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

 You can look at a character after reading it 

and then put it back if you so decide. 

 

 However you can only put back 

the very last character that was read. 

 

 This is called one-character lookahead. 

One-Character Lookahead 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 
A typical situation for lookahead is to look for numbers 

  before reading them so that a failed read won’t happen: 
 

char ch; 

in_file.get(ch); 

if (isdigit(ch)) // Is this a number? 

{ 

   // Put the digit back so that it will  

   // be part of the number we read 

   in_file.unget(); 

 

   // Read integer starting with ch 

   int n; 

   data >> n; 

} 

Reading a Number Only If It Is a Number 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 
 

       isdigit??? 
 

  

  

if (isdigit(ch)) 

  

   

    

     

     

     

 

  

Reading a Number Only If It Is a Number 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

 

 
The isdigit function is one of several 

functions that deal with characters. 

 
#include <cctype> is required. 

Character Functions in <cctype> 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

 

 
  

Character Functions in <cctype> 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

The function (it’s not a method): 

 
getline() 

 

is used to read a whole line 

up to the next newline character. 
 

Reading A Whole Line: getline 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

         stream to read from 

            string to read into 

 

 

getline(in_file, line); 

 

 

     stops at '\n', 

     takes it from the stream 

     and throws it away  
             – does not store it in string 

Reading A Whole Line: getline 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 Until the next newline character, 

all whitespace and all other characters 

are taken and stored into the string 

– except the newline character – which is just “thrown away” 

 
The only type that can be read into is the string type. 

 

string line; 

getline(in_file, line); // stops at '\n' 

Reading A Whole Line: getline 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 
The getline function, like the others we’ve 

  seen, returns the “not failed” condition. 

 

To process a whole file line by line: 

 

string line; 

while( getline(in_file, line)) 

{ 

   // Process line 

} 

Reading A Whole Line: getline 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

       Reading one line and then processing that line, 

taking it apart to get the individual pieces of data from it, 
is a typical way of working with files. 

Processing a File Line by Line 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

Here is a top secret online CIA file: 

 
http://www.cia.gov/library/publications/the-world-factbook/ 

 

 

Don’t tell anyone, but it looks like this: 

 

 

 

 

 

Each line has: country name, its population, a newline character. 
 

(And there is some whitespace in there too.) 

 

Processing a File Line by Line 

China 1330044605 

India 1147995898 

United States 303824646 

... 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 After having copied the secret contents from the 

website into a text file we will read this file line by line: 

 

// we've opened the file 

// but we can't tell you it’s name or... 

 

string line; 

while( getline(in_file, line)) 

{ 

   // Process line 

} 

    

Processing a File Line by Line 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

 
To extract the data from the line variable, you need to 

find out where the name ends and the number starts. 

 

Processing a File Line by Line 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 // Locate the first digit of population 

 int i = 0; 

 while (!isdigit(line[i])) { i++; } 

  

 // Find end of country name 

 int j = i - 1; 

 while (isspace(line[j])) { j--; } 

 

Processing a File Line by Line 

 

 

 

 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

  All clear – make the extraction at 09:01 hours. 

 
(that’s CIA-speak for: use string methods to  

“extract” the country name and population values) 

 
(we guess “at 09:01” hours means now) 

 

 

   string country_name = line.substr(0, j + 1); 

   string population = line.substr(i); 

Processing a File Line by Line 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

  Has the CIA made a blunder? 
Aren’t these being stored as strings? 

 

 

(Is that a security risk?) 

 
 

 

    

Processing a File Line by Line 

string country_name = line.substr(0, j + 1); 

string population = line.substr(i); 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

      Recall that you know how to output to a file. 

 

 

(OK) 

Writing Text Output 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 
      You use the operator >> to send 

strings and numbers to an output stream: 

 
ofstream out_file; 

out_file.open("output.txt"); 

if (in_file.fail()) { return 0; } 

out_file << name << " " << value << endl; 

Writing Text Output 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 
But what about a single character? 

 
The put method: 

 

 
 out_file.put(ch); 

 

 

 

Writing Text Output 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Formatting Output – Manipulators 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Formatting Output – Manipulators 

I don’t hear anything. 

Not now, but when I manipulate that red slider, 

you’d better have your earplugs ready! 

OK, there’ in. Go ahead… 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

                                        

Nice. What’s the name of this tune? 

Formatting Output – Manipulators 

I don’t hear anything. 

Not now, but when I manipulate that red slider, 

you’d better have your earplugs ready! 

OK, there’ in. Go ahead 

“Sliders On A Slide”  

We’re gonna use it in a pretty aggressive, manipulative ad.  



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 To control how the output is formatted, 

you use stream manipulators. 

 

 

A manipulator is an object that: 
 

– is sent to a stream using the << operator. 
 

– affects the behavior of the stream. 

 

 

Formatting Output – Manipulators 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

You already know one: 

 
endl 

 

 

 

 
Yes, endl is a manipulator. 

Formatting Output – Manipulators 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 When you send the endl manipulator to the screen: 

    cout << endl; 

 endl causes the cursor 

to go to the beginning of the next line. 

 

 

Moving the cursor is definitely an affectation! 
 

 

 

Wait… 

Formatting Output – Manipulators 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

It’s about sending the manipulator: 

 
output_stream << manipulator 

 

 

 

 

Some other output manipulators: 

  

Formatting Output – Manipulators 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

C++ for Everyone by Cay Horstmann 

Copyright © 2008 by John Wiley & Sons. All rights reserved 

 

Recall that CIA time display? 

 

 

 

 

09:01 
 

 
 

 

Formatting Output – Manipulators 

numbers start with zeros 

two character spaces wide 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

C++ for Everyone by Cay Horstmann 

Copyright © 2008 by John Wiley & Sons. All rights reserved 

 

Recall that CIA time display? 

 

 

 

 

09:01 
 

 
 

 

Formatting Output – Manipulators 

very 

military! 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

    Use setfill when you need to pad 

 numbers with leading zeroes. 

  

 
strm << setfill('0') 

   << setw(2) << hours << ":“ 

   << setw(2) << minutes 

   << setfill(' '); 

  

 

Formatting Output – Manipulators 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

    Use setfill when you need to pad 

 numbers with leading zeroes. 
  To set the width in which to display, use setw. 

 
strm << setfill('0') 

   << setw(2) << hours << ":“ 

   << setw(2) << minutes 

   << setfill(' '); 

  

 

Formatting Output – Manipulators 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

    Use setfill when you need to pad 

 numbers with leading zeroes. 
  To set the width in which to display, use setw. 

 
strm << setfill('0') 

   << setw(2) << hours << ":“ 

   << setw(2) << minutes 

   << setfill(' '); 

  

 
      That last setfill re-sets the fill back 

to the default space character. 

Formatting Output – Manipulators 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

  

  

Formatting Output – Manipulators 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

  

Formatting Output – A Test 

 

 See if you can write the output statements to 

accomplish the following outputs to the stream 
variable, strm , which is already opened. 

 

 You can ask the person with the clicker or pointer, or 

whoever is in charge of this presentation, to go back to 

the slide with the table of manipulators. 

 

Be sure to 

say 

please… 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

  

Formatting Output – A Test 

Produce this output: 

  
12.3457 1.23457e+08 

 

The code: 
 

strm << 12.3456789 << " " << 123456789.0; 

(will this be on the test?) 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

  

Formatting Output – A Test 

Produce this output: 

  
12.3457 1.23457e+08 

 

The code: 
 

strm << 12.3456789 << " " << 123456789.0; 

 

OK, that was sort of a trick question. 

We did nothing! 

The default precision and notation is call the general format. 

Some decimal fractions are shown in scientific notation, and 

the default precision to round off to is used. 
 

 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

  

Formatting Output – A Test 

 The fixed manipulator was in the table, but 

scientific wasn’t shown (it also is a manipulator). 

 

The question was about the default settings. 

 

The lesson to be learned is: 

 
 

 

Always take charge of formatting your output 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

  

Formatting Output – A Test 

Produce this output: 

  
12.345679 123456789.000000 

 

The code: 
 

strm << setprecision(6) << fixed 

   << 12.3456789 << " " << 123456789.0; 

Good 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

  

Formatting Output – A Test 

Produce this output (note that the column width is 10): 

  
       123 

      4567 

 

The code: 
 

strm << setw(10) << 123 << endl 

   << setw(10) << 4567; 

Excelle

nt 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

  

Formatting Output – A Test 

Produce this output (note there are 10 dashes on each side): 
  

----------|---------- 

Count:            177 

----------|---------- 
 

The code: 
 

strm << "----------|----------\n" 

   << left << setw(10) << "Count:" 

   << right << setw(11) << 177 

   << "----------|----------\n"; 

 

An A++ in C++! 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 The time is now: 

 

 

 

  09:01 

 

 

It’s  stringstream time  
 

Welcome to CIA headquarters 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

End Chapter Eight: Streams, Part I 

Slides by Evan Gallagher & Nikolay Kirov 


