
Using a Debugger WE5

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

Just like compilers, debuggers vary widely from one system to another. The debuggers of most
integrated environments have a similar layout—see Figure 11. You will have to find out how
to prepare a program for debugging, and how to start the debugger on your system. With
many development environments, you can simply pick a menu command to build your pro­
gram for debugging and start the debugger.

Figure 11
The Debuggers of
Visual C++, XCode,
and Eclipse

WorkED EXamplE 5.2 Using a Debugger

As you have undoubtedly realized by now, computer programs rarely run perfectly the first
time. At times, it can be quite frustrating to find the errors, or bugs, as they are called by pro­
grammers. Of course, you can insert print statements into your code that show the program
flow and values of key variables. You then run the program and try to analyze the printout.
But if the printout does not clearly point to the problem, you need to add and remove print
statements and run the program again. That can be a time­consuming process.

Modern development environments contain a debugger, a program that helps you locate
bugs by letting you follow the execution of a program. You can stop and restart the program
and see the contents of variables whenever the program is temporarily stopped. At each stop,
you can decide how many program steps to run until the next stop.

WE6 Chapter 5 Functions

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

Once you have started the debugger, you can go a long way with just three debugging com­
mands: “set breakpoint”, “single step”, and “inspect variable”. The names and keystrokes or
mouse clicks for these commands differ widely between debuggers, but all debuggers support
these basic commands. You can find out how, either from the docu mentation or a lab manual,
or by asking someone who has used the debugger before.

When you start the debugger, it runs at full speed until it reaches a breakpoint. Then execu­
tion stops, and the breakpoint that causes the stop is displayed.

You can now inspect variables and step through the program a line at a time, or continue
running the program at full speed until it reaches the next breakpoint. When the program ter­
minates, the debugger stops as well.

Breakpoints stay active until you remove them, so you should periodically clear the break­
points that you no longer need.

Once the program has stopped, you can look at the current values of variables. Some debug­
gers always show you a window with the current local variables. On other debuggers you
issue a command such as “inspect variable” and type the variable name. If all variables contain
what you expected, you can run the program until the next point where you want to stop.

Running to a breakpoint gets you there speedily, but you don’t know what the program
did along the way. For a better understanding of the program flow, you can step through the
program a line at a time. Most debuggers have two step commands, one usually called “step
into”, which steps inside function calls, and one called “step over”, which skips over function
calls. You should step into a function to check whether it carries out its job correctly. Step over
a function if you know it works correctly.

Finally, when the program has finished running, the debugging session is also finished. To
run the program again, you need to start another debugging session.

A debugger can be an effective tool for finding and removing bugs in your program. How­
ever, it is no substitute for good design and careful programming. If the debugger does not find
any errors, it does not mean that your pro gram is bug­free. Testing and debugging can only
show the presence of bugs, not their absence.

Here is a simple program for practicing the use of a debugger. The program is supposed
to compute all prime numbers up to a number n. (An integer is defined to be prime if it is not
evenly divisible by any number except by 1 and itself. Also, mathematicians find it convenient
not to call 1 a prime. Thus, the first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19.)

Using a Debugger WE7

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

ch05/primes.cpp

1 #include <iostream>
2
3 using namespace std;
4
5 // Caution: This program has bugs.
6
7 /**
8 Tests if an integer is a prime.
9 @param n any positive integer

10 @return true if n is a prime, false otherwise
11 */
12 bool isprime(int n)
13 {
14 if (n == 2)
15 {
16 // 2 is a prime
17 return true;
18 }
19 if (n % 2 == 0)
20 {
21 // No other even number is a prime
22 return false;
23 }
24
25 // Try finding a number that divides n
26
27 int k = 3; // No need to divide by 2 since n is odd
28 // Only need to try divisors up to sqrt(n)
29 while (k * k < n)
30 {
31 if (n % k == 0)
32 {
33 // n is not a prime since it is divisible by k
34 return false;
35 }
36 // Try next odd number
37 k = k + 2;
38 }
39
40 // No divisor found. Therefore, n is a prime
41 return true;
42 }
43
44 int main()
45 {
46 cout << "Please enter the upper limit: ";
47 int n;
48 cin >> n;
49 for (int i = 1; i <= n; i = i + 2)
50 {
51 if (isprime(i))
52 {
53 cout << i << endl;
54 }
55 }
56 return 0;
57 }

WE8 Chapter 5 Functions

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

When you run this program with an input of 10, then the output is

 1
 3
 5
 7
 9

That is not very promising. It looks as if the program just prints all odd numbers. Let us find
out what it does wrong by using the debugger.

First, set a breakpoint in line 51 and start debugging the program. On the way, the program
will stop to input a value into n. Type 10 at the input prompt. The program will then stop at the
breakpoint.

Now we wonder why the program treats 1 as a prime. Step into the isprime function.
Note the call stack display. It shows that the isprime function is currently active, and it is

called by the main func tion.

Using a Debugger WE9

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

Inspect the variable n to confirm that it is currently 1.

Execute the “step over” command a few times. You will notice that the program skips the two
if statements. That’s not surprising—1 is an odd number. Then the program skips over the
while statement and is ready to return true, indicating that 1 is a prime.

Inspect the value of k. It is 3, which explains why the while loop was never entered. It looks
like the isprime func tion needs to be rewritten to treat 1 as a special case.

Next, we would like to know why the program doesn’t print 2 as a prime even though the
isprime function recog nizes that 2 is a prime. Continue the debugger. It will stop at the break­
point in line 51.

Note that i is 3. Now it becomes clear. The for loop in the main function only tests odd
numbers. Either main should test both odd and even numbers, or better, it should just handle 2
as a special case.

Finally, we would like to find out why the program believes 9 is a prime. Continue debug­
ging until the break point is hit with i = 9. Step into the isprime function. Now use “step over”
repeatedly. The two if statements are skipped, which is correct since 9 is an odd number. The
program again skips past the while loop. Inspect k to find out why. k is 3. Look at the condition
in the while loop. It tests whether k * k < n. Now k * k is 9 and n is also 9, so the test fails.

When checking whether n is prime, it makes sense to only test divisors up to n . If n can
be factored as p × q, then the factors can’t both be greater than n . But actually that isn’t quite
true. If n is a perfect square of a prime, then its sole nontrivial divisor is equal to n . That is
exactly the case for 9 = 3 × 3. We should have tested for k * k <= n.

By running the debugger, we discovered three bugs in the program:
• isprime falsely claims 1 to be a prime.
• main doesn’t test 2.
• There is an off­by­one error in isprime. The condition of the while statement should be

k * k <= n.

Here is the improved program:

1 #include <iostream>
2
3 using namespace std;
4
5 /**
6 Tests if an integer is a prime.
7 @param n any positive integer
8 @return true if n is a prime, false otherwise
9 */

10 bool isprime(int n)
11 {
12 if (n == 1)
13 {

WE10 Chapter 5 Functions

C++ for Everyone, 2e, Cay Horstmann, Copyright © 2012 John Wiley and Sons, Inc. All rights reserved.

14 // 1 is not a prime
15 return false;
16 }
17 if (n == 2)
18 {
19 // 2 is a prime
20 return true;
21 }
22 if (n % 2 == 0)
23 {
24 // No other even number is a prime
25 return false;
26 }
27
28 // Try finding a number that divides n
29
30 int k = 3; // No need to divide by 2 since n is odd
31 // Only need to try divisors up to sqrt(n)
32 while (k * k <= n)
33 {
34 if (n % k == 0)
35 {
36 // n is not a prime since it is divisible by k
37 return false;
38 }
39 // Try next odd number
40 k = k + 2;
41 }
42
43 // No divisor found. Therefore, n is a prime
44 return true;
45 }
46
47 int main()
48 {
49 cout << "Please enter the upper limit: ";
50 int n;
51 cin >> n;
52 if (n >= 2)
53 {
54 cout << 2 << endl;
55 }
56 for (int i = 3; i <= n; i = i + 2)
57 {
58 if (isprime(i))
59 {
60 cout << i << endl;
61 }
62 }
63 return 0;
64 }

Is our program now free from bugs? That is not a question the debugger can answer. Remem­
ber, testing can only show the presence of bugs, not their absence.

