
C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Chapter Six: Arrays and Vectors II 

Slides by Evan Gallagher & Nikolay Kirov 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

• To become familiar with using vectors to collect values 

• To write functions that receive and return vectors 

• To be able to use two-dimensional arrays 

 

 

Chapter Goals 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 It often happens that you want to store collections 

of values that have a two-dimensional layout. 

 

 Such data sets commonly occur in 

financial and scientific applications. 

Two-Dimensional Arrays 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 An arrangement consisting of tabular data: 

   rows and columns of values 

 

 

 

 

 

 

 

 is called:   
 a two-dimensional array, or a matrix. 

Two-Dimensional Arrays 

(no, it’s not tax time again) 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

   

Two-Dimensional Arrays 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

   

Two-Dimensional Arrays 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

   

Two-Dimensional Arrays 

  It’s my     
time! 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

   

Two-Dimensional Arrays 

 

9.94? 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

   

Two-Dimensional Arrays 

 

9.98? 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 Consider this data from the 2010 

Olympic  skating competitions: 

Two-Dimensional Arrays 

       Gold   Silver    Bronze 

Canada 1 0 1 

China 1 1 0 

Germany 0 0 1 

Korea 1 0 0 

Japan 0 1 1 

Russia 0 1 1 

United States 1 1 0 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 Consider this data from the 2006 

Olympic  skating competitions: 

Two-Dimensional Arrays 

       Gold   Silver    Bronze 

Canada 1 0 1 

China 1 1 0 

Germany 0 0 1 

Korea 1 0 0 

Japan 0 1 1 

Russia 0 1 1 

United States 1 1 0 

  me! 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 C++ uses an array with two subscripts 

to store a two-dimensional array. 

 

       const int COUNTRIES = 7; 

      const int MEDALS = 3; 

      int counts[COUNTRIES][MEDALS]; 

 

 

Defining Two-Dimensional Arrays 

An array with 7 rows and 3 columns 

is suitable for storing our medal count data. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 Just as with one-dimensional arrays, 

you cannot change the size of 

a two-dimensional array once it has been defined. 

Defining Two-Dimensional Arrays – Unchangeable Size 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

         But you can initialize a 2-D array: 

 

  int counts[COUNTRIES][MEDALS] = 

     { 

        { 1, 0, 1 }, 

        { 1, 1, 0 }, 

        { 0, 0, 1 }, 

        { 1, 0, 0 }, 

        { 0, 1, 1 }, 

        { 0, 1, 1 }, 

        { 1, 1, 0 } 

     }; 

Defining Two-Dimensional Arrays – Initializing 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Defining Two-Dimensional Arrays   



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 The Olympic array looks like this: 

 

 

     

 

 

 

 

 

 

  Access to the second element in the fourth row is: 

  counts[3][1] 

Defining Two-Dimensional Arrays – Accessing Elements 

counts 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

  

 

 

 

 

 

 

 // set value to what is currently 

// stored in the array at [3][1] 

int value = counts[3][1]; 

Defining Two-Dimensional Arrays – Accessing Elements 

counts 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

 

 

 

 

 

 

 

 

  // set that position in the array to 8 

 counts[3][1] = 8; 

Defining Two-Dimensional Arrays – Accessing Elements 

8 

counts 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

   

Two-Dimensional Arrays 

    I’d like to see 
the results 

now, please. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Gladly: 

 
 

for (int i = 0; i < COUNTRIES; i++) 

{ 

   // Process the ith row 

   for (int j = 0; j < MEDALS; j++) 

   { 

      // Process the jth column in the ith row 

      cout << setw(8) << counts[i][j]; 

   } 

   // Start a new line at the end of the row 

   cout << endl; 

} 

Two-Dimensional Arrays 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 A common task is to compute row or column totals. 

 

 In our example, 

the row totals give us the total number 

of medals won by a particular country. 

Computing Row and Column Totals 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 We must be careful to get the right indices. 

 

 

 

 

 

 

 

 

 

     For each row i, we must use the column indices: 

 0, 1, … (MEDALS -1)  

Computing Row and Column Totals 

counts 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

          How many of each kind of medal (metal!) was 
 won by the set of these particular countries? 

 

 

 

 
    That would be a column total. 
 

Let j be the silver column:  

 

 int total = 0; 

for (int i = 0; i < COUNTRIES; i++) 

{ 

   total = total + counts[i][j]; 

} 

Computing Row and Column Totals 

counts 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

 When passing a two-dimensional array to a function, 

you must specify the number of columns 

as a constant when you write the parameter type. 

 

 

table[][COLUMNS] 

Two-Dimensional Array Parameters 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

This function computes the total of a given row. 

 

const int COLUMNS = 3; 

int row_total(int table[][COLUMNS], int row) 

{ 

   int total = 0; 

   for (int j = 0; j < COLUMNS; j++) 

   { 

      total = total + table[row][j]; 

   } 

   return total; 

} 

Two-Dimensional Array Parameters 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

int row_total(int table[][COLUMNS], int row) 

 

 

In this function, to find the element  table[row][j] 

           the compiler generates code 
 

               by computing the offset 

 
(row * COLUMNS) + j 

 

Two-Dimensional Array Parameters 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 That function works for only arrays of 3 columns. 

 

If you need to process an array 

with a different number of columns, like 4, 

 

you would have to write 

a different function 

that has 4 as the parameter. 

 

 

Hm. 

Two-Dimensional Array Parameters 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 What’s the reason behind this?  

 

 

Although the array appears to be two-dimensional, 

the elements are still stored as a linear sequence. 

 

Two-Dimensional Array Parameters 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 counts is stored as a sequence of rows, each 3 long. 

So where is counts[3][1]? 

The offset from the start of the array is 

3 x number of columns + 1 

 

Two-Dimensional Array Parameters 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

int row_total(int table[][COLUMNS], int row) 

 

 

  table[] looks like a normal 1D array. 
 

    Notice the empty square brackets. 

Two-Dimensional Array Parameters 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

int row_total(int table[][COLUMNS], int row) 

 

 

  table[] looks like a normal 1D array. 
     

 It is! 
 

Each element is COLUMNS ints long. 

Two-Dimensional Array Parameters 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

    The row_total function did not need to 
know the number of rows of the array. 

 

 If the number of rows is required, pass it in: 

 

 
 int column_total(int table[][COLUMNS], int rows, int col) 

 { 

    int total = 0; 

    for (int i = 0; i < rows; i++)  

    { 

       total = total + table[i][col]; 

    } 

    return total; 

 } 

Two-Dimensional Array Parameters 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Leaving out the columns value is a very common error. 

 

 
  int row_total(int table[][], int row) 

  ... 

 

  The compiler doesn’t know how ―long‖ each row is! 

Two-Dimensional Array Parameters – Common Error 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Putting a value for the rows is not an error. 

 

 

  int row_total(int table[17][COLUMNS], int row) 

  ... 

 

  The compiler just ignores whatever you place there. 

 

 

Two-Dimensional Array Parameters – Not an Error 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Putting a value for the rows is not an error. 

 

 

  int row_total(int table[17][COLUMNS], int row) 

  ... 

 

  The compiler just ignores whatever you place there. 

 

 
  int row_total(int table[][COLUMNS], int row) 

  ... 

 

 

Two-Dimensional Array Parameters – Not an Error 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

Here is the complete program for medal and column counts. 

 

 

 

 

 
#include <iostream> 

#include <iomanip> 

#include <string> 

 

using namespace std; 

 

const int COLUMNS = 3; 

Two-Dimensional Array Parameters 

ch06/medals.cpp 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

/** 

   Computes the total of a row in a table. 

   @param table a table with 3 columns 

   @param row the row that needs to be totaled 

   @return the sum of all elements in the given row 

*/ 

double row_total(int table[][COLUMNS], int row) 

{ 

   int total = 0;  

   for (int j = 0; j < COLUMNS; j++) 

   { 

      total = total + table[row][j]; 

   } 

   return total; 

} 

Two-Dimensional Array Parameters 

ch06/medals.cpp 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

int main() 

{ 

   const int COUNTRIES = 7; 

   const int MEDALS = 3; 

 

   string countries[] =  

      {  

         "Canada", 

         "China", 

         ”Germany", 

         ”Korea", 

         ”Japan", 

         ”Russia", 

         "United States"  

      };    

Two-Dimensional Array Parameters 

ch06/medals.cpp 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

  int counts[COUNTRIES][MEDALS] =  

     {  

        { 1, 0, 1 }, 

        { 1, 1, 0 },  

        { 0, 0, 1 },  

        { 1, 0, 0 },  

        { 0, 1, 1 },  

        { 0, 1, 1 }, 

        { 1, 1, 0 } 

     };  

Two-Dimensional Array Parameters 

ch06/medals.cpp 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

   cout << "    Country  Gold  Silver  Bronze   Total" 

       << endl; 

 

   // Print countries, counts, and row totals 

   for (int i = 0; i < COUNTRIES; i++) 

   { 

      cout << setw(15) << countries[i]; 

      // Process the ith row 

      for (int j = 0; j < MEDALS; j++) 

      { 

         cout << setw(8) << counts[i][j]; 

      } 

      int total = row_total(counts, i); 

      cout << setw(8) << total << endl;  

   } 

   return 0; 

} 

Two-Dimensional Array Parameters 

ch06/medals.cpp 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Arrays – One Drawback 

  

    

  

   The size of an array cannot be changed after it is created. 
 

You have to get the size right – before you define an array. 
 

 

The compiler has to know the size to build it. 
and a function must be told about the number 

elements and possibly the capacity. 
 

 

 

   It cannot hold more than it’s initial capacity. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Arrays – One Drawback 

  

    

  

 

   Wouldn’t it be good if there were 
   something that never filled up? 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Vectors 

  

    

  

  A vector 
  

is not fixed in size when it is created 

  and 

   it does not have the limitation 
of needing an auxiliary variable 

  AND 

    you can keep putting things into it 

   forever! 

 

    Well, conceptually forever. 

    (There’s only so much RAM.) 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Defining Vectors 

  

    

  

   When you define a vector, you 
must specify the type of the elements. 

 

 

 vector<double> data; 

 

 

Note that the element type is enclosed in angle brackets. 

 

data can contain only doubles 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Defining Vectors 

  

    

  

   By default, a vector is empty when created. 
 

 

 

vector<double> data; // data is empty 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Defining Vectors 

  

    

  

You can specify the initial size. 

You still must specify the type of the elements. 

 

For example, here is a definition of a 

vector of doubles whose initial size is 10. 

 

 vector<double> data(10); 

 

This is very close to the data array we used earlier. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Defining Vectors 

  

    

  

. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Defining Vectors 

  

    



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Accessing Elements in Vectors 

  

    

  

 You access the elements in a vector 
the same way as in an array, using an index. 

 
  vector<double> values(10); 

  //display the forth element 

  cout << values[3] << end; 

 

 

 

       HOWEVER… 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Accessing Elements in Vectors 

  

    

  

 

 

 It is an error to access a element that is not there in a vector. 
 

 
  vector<double> values; 

  //display the forth element 

  cout << values[3] << end; 

  

 ERROR!  

 EMPTY!     



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

So how do you put values into a vector? 

 

 

 

 

      

You push ’em— 

push_back  

  

    

—in the back! 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back and pop_back 

  

    

    

The method push_back is used to put a value into a vector: 

 

 

 

  values.push_back( 32 ); 

 

      



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back and pop_back 

  

    

    

  values.push_back( 32 ); 

 

adds the value 32.0 to the vector named values. 
 

  The vector increases its size by 1. 

      



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

And how do you take them out? 

 

 

 

 

      

pop_back 

  

    

You pop ’em! 

—from the back! 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back and pop_back 

  

    

    

The method pop_back removes 
 

the last value placed into the vector with push_back. 

 

 

  values.pop_back(); 
 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back and pop_back 

  

    

    

values.pop_back(); 
 

removes the last value from the vector named values 

 

and the vector decreases its size by 1. 

      



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

vector<double> values; 

 

values.push_back(32); 

values.push_back(54); 

values.push_back(67.5); 

values.push_back(29); 

values.push_back(65); 

values.pop_back(); 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

vector<double> values; 

 

values.push_back(32); 

values.push_back(54); 

values.push_back(67.5); 

values.push_back(29); 

values.push_back(65); 

values.pop_back(); 

values 
 

values 
 

  values is an empty vector. 
Its size is 0. 



 

 

 
vector<double> values; 

 

values.push_back(32); 

values.push_back(54); 

values.push_back(67.5); 

values.push_back(29); 

values.push_back(65); 

values.pop_back(); 

C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

values 
 



 

 

 
vector<double> values; 

 

values.push_back(32); 

values.push_back(54); 

values.push_back(67.5); 

values.push_back(29); 

values.push_back(65); 

values.pop_back(); 

C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

values 
 

  32 is placed into the vector. 
Its size is now 1. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 
vector<double> values; 

 

values.push_back(32); 

values.push_back(54); 

values.push_back(67.5); 

values.push_back(29); 

values.push_back(65); 

values.pop_back(); 

 

values 
 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 
vector<double> values; 

 

values.push_back(32); 

values.push_back(54); 

values.push_back(67.5); 

values.push_back(29); 

values.push_back(65); 

values.pop_back(); 

 

values 
 

  54 is placed into the vector. 
It now contains the elements 
32.0 and 54.0, 
and its size is 2. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

vector<double> values; 

 

values.push_back(32); 

values.push_back(54); 

values.push_back(67.5); 

values.push_back(29); 

values.push_back(65); 

values.pop_back(); 

 

values 
 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

vector<double> values; 

 

values.push_back(32); 

values.push_back(54); 

values.push_back(67.5); 

values.push_back(29); 

values.push_back(65); 

values.pop_back(); 

 

values 
 

  67.5 is placed into the vector. 
It now contains the elements 
32.0, 54.0 and 67.5, 
and its size is 3. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

vector<double> values; 

 

values.push_back(32); 

values.push_back(54); 

values.push_back(67.5); 

values.push_back(29); 

values.push_back(65); 

values.pop_back(); 

 

values 
 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

vector<double> values; 

 

values.push_back(32); 

values.push_back(54); 

values.push_back(67.5); 

values.push_back(29); 

values.push_back(65); 

values.pop_back(); 

 

values 
 

  29 is placed into the vector. 
It now contains the elements 
32.0, 54.0, 67.5 and 29.0, 
and its size is 4. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

vector<double> values; 

 

values.push_back(32); 

values.push_back(54); 

values.push_back(67.5); 

values.push_back(29); 

values.push_back(65); 

values.pop_back(); 

 

values 
 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

vector<double> values; 

 

values.push_back(32); 

values.push_back(54); 

values.push_back(67.5); 

values.push_back(29); 

values.push_back(65); 

values.pop_back(); 

 

values 
 

  65 is placed into the vector. 
It now contains the elements 
32.0, 54.0, 67.5, 29.0 and 65.0, 
and its size is 5. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Removing the Last Element with pop_back 

  

    

 

 

 

vector<double> values; 

 

values.push_back(32); 

values.push_back(54); 

values.push_back(67.5); 

values.push_back(29); 

values.push_back(65); 

values.pop_back(); 

 

 

values 
 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Removing the Last Element with pop_back 

  

    

 

 

 

vector<double> values; 

 

values.push_back(32); 

values.push_back(54); 

values.push_back(67.5); 

values.push_back(29); 

values.push_back(65); 

values.pop_back(); 

 

 

values 
 

  65 is no longer in the vector. 
It now contains only the elements 
32.0, 54.0, 67.5 and 29.0, 
and its size is 4. 

poof 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back and pop_back 

  

    

    

You can use push_back to put user input into a vector: 

 

double input;  
while (cin >> input) 
{ 

      values.push_back(input); 

   } 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

 

 

vector<double> values; 

 

double input; 

while (cin >> input 

{ 

   values.push_back(input); 

} 

     

push_back Adds an Element 

  

    



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 

 

 

 

vector<double> values; 

 

double input; 

while (cin >> input 

{ 

   values.push_back(input); 

} 

     

push_back Adds an Element 

  

    

We are starting again 

with an empty vector. 

Its size is 0. 

 

values 
 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

 

vector<double> values; 

 

double input; 

while (cin >> input) 

{ 

   values.push_back(input); 

} 

        

--- The user types 32 

 

values 
 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

 

vector<double> values; 

 

double input; 

while (cin >> input) 

{ 

   values.push_back(input); 

}  

 

values 
 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

 

vector<double> values; 

 

double input; 

while (cin >> input) 

{ 

   values.push_back(input); 

}    32 is placed into the vector. 
Its size is now 1. 

 

values 
 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

 

vector<double> values; 

 

double input; 

while (cin >> input) 

{ 

   values.push_back(input); 

} 

        

--- The user types 54 

 

values 
 



 

 

 

 

vector<double> values; 

 

double input; 

while (cin >> input) 

{ 

   values.push_back(input); 

} 

        
  54 is placed into the vector. 

Its size is now 2. 

C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

values 
 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

 

vector<double> values; 

 

double input; 

while (cin >> input) 

{ 

   values.push_back(input); 

} 

        
 

--- The user types 67.5 

 

values 
 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

 

vector<double> values; 

 

double input; 

while (cin >> input) 

{ 

   values.push_back(input); 

} 

      
  67.4 is placed into the vector. 

Its size is now 3. 

 

values 
 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

 

vector<double> values; 

 

double input; 

while (cin >> input) 

{ 

   values.push_back(input); 

} 

        

--- The user types 29 

 

values 
 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

push_back Adds an Element 

  

    

 

 

 

 

vector<double> values; 

 

double input; 

while (cin >> input) 

{ 

   values.push_back(input); 

} 

  
  29 is placed into the vector. 

Its size is now 4. 

 

values 
 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Using Vectors – size_of 

  

    

  

 

How do you visit every element in an vector? 

 

 

Recall arrays. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Using Vectors – size_of 

  

    

  

 

With arrays, to display every element, it would be: 

 
 for (int i = 0; i < 10; i++) 
 { 
     cout << values[i] << endl; 

 } 

? 

But with vectors, we don’t know about that 10! 

 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Using Vectors – size_of 

  

    

 

  Vectors have the size member function 
which returns the current size of a vector. 

 

The vector always knows how many are 
in it and you can always ask it to give you 

 

that quantity by calling the size method: 

 
 

for (int i = 0; i < values.size(); i++) 
{ 
   cout << values[i] << endl; 

} 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Using Vectors – size_of 

  

    

 

   Recall all those array algorithms you learned? 
 

for (int i = 0; i < size of array; i++) 
   { 
      ... // use array [i] 

 

   To make them work with vectors, you still use a for statement, 

   but instead of looping until size of array , 
 
 

             you loop until vector.size(): 
 

for (int i = 0; i < vector.size(); i++) 
   { 
      ... // use vector [i] 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Vectors As Parameters In Functions 

You know that 

 

functions 

 

are the way to go for code reuse 

and solving sub-problems 

       and many other good things… 

so… 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Vectors As Parameters In Functions 

 How can you pass vectors as parameters? 

 

 

 

   You use vectors as function parameters in 

exactly the same way as any parameters. 

 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Vectors Parameters – Without Changing the Values 

 For example, the following function computes 

the sum of a vector of floating-point numbers: 
 

  double sum(vector<double> values) 

 { 

    double total = 0; 

    for (int i = 0; i < values.size(); i++) 

    { 

       total = total + values[i]; 

    } 

    return total; 

 } 

 This function visits the vector elements, 
but it does not change them. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Vectors Parameters – Changing the Values 

 Sometimes the function should change 

the values stored in the vector: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  void multiply(vector<double>& values, double factor) 
{ 

 for (int i = 0; i < values.size(); i++) 
 { 
    values[i] = values[i] * factor; 
 } 
} 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Vectors Parameters – Changing the Values 

 Sometimes the function should change 

the values stored in the vector: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  void multiply(vector<double>& values, double factor) 
{ 

 for (int i = 0; i < values.size(); i++) 
 { 
    values[i] = values[i] * factor; 
 } 
} 

 Note that the vector is passed by reference, 

just like any other parameter you want to change. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Vectors Returned from Functions 

 Sometimes the function should return a vector. 

 Vectors are no different from any other values in this regard. 

 Simply build up the result in the function and return it: 
 

  vector<int> squares(int n) 
 { 
    vector<int> result; 
    for (int i = 0; i < n; i++) 
    { 
       result.push_back(i * i); 
    } 
    return result; 
 } 

 
 The function returns the squares from 02 up to (n – 1) 2 

by returning a vector. 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Vectors and Arrays as Parameters in Functions 

   

 

 

 Vectors as parameters are easy. 

 

 

    Arrays are not quite so easy. 
 

 

 

 

 

 

  
(vectors… vectors…) 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Suppose you have two arrays 

 
 int squares[5] = { 0, 1, 4, 9, 16 }; 

 int lucky_numbers[5]; 

 

The following assignment is an error: 

 
 lucky_numbers = squares; // Error 

 

You must use a loop to copy all elements: 

 
 for (int i = 0; i < 5; i++) 
 { 
    lucky_numbers[i] = squares[i]; 
 } 

Common Algorithms – Copying, Arrays Cannot Be Assigned 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 Vectors do not suffer from this limitation. 

 Consider this example: 
  

  vector<int> squares; 

  for (int i = 0; i < 5; i++) 
 { 
      squares.push_back(i * i); 
 } 

  vector<int> lucky_numbers; 
               // Initially empty 

  lucky_numbers = squares; 

            // Now lucky_numbers contains 
        // the same elements as squares 

Common Algorithms – Copying, Vectors Can Be Assigned 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

 You can assign a vector to another vector. 

 Of course they have to hold the same type to do this. 
  

  vector<int> squares; 

  for (int i = 0; i < 5; i++) 
 { 
      squares.push_back(i * i); 
 } 

  vector<int> lucky_numbers; 
               // Initially empty 

  lucky_numbers = squares; 

            // Now lucky_numbers contains 
        // the same elements as squares 

Common Algorithms – Copying, Vectors Can Be Assigned 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Common Algorithms – Finding Matches 

  

    

    Suppose we want all the values in a vector that are 
greater than a certain value, say 100, in a vector. 

 

    Store them in another vector: 

 
vector<double> matches; 

for (int i = 0; i < values.size(); i++) 

{ 

   if (values[i] > 100) 

   { 

      matches.push_back(values[i]); 

   } 

} 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Common Algorithms – Removing an Element, Unordered 

  

    

    If you know the position of an element you want to remove 

from a vector in which the elements are not in any order, 

as you did in an array, 
 

    overwrite the element at that position 

with the last element in the vector, 
 

    then be sure to remove the last element, 

which also makes the vector smaller. 
 

int last_pos = values.size() - 1; 

   // Take the position of the last element 

values[pos] = values[last_pos]; 

   // Replace element at pos with last element 

values.pop_back(); 

   // Delete last element to make vector 

   // one smaller 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Common Algorithms – Removing an Element, Ordered 

  

    

    If you know the position of an element you want to remove 

from a vector in which the elements are in some order, 

as you did in an array, 
 

    move all the elements after that position, 
  

    then remove the last element to reduce the size. 

 
for (int i = pos + 1; i < values.size(); i++) 

{ 

   values[i - 1] = values[i]; 

} 

data.pop_back(); 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Common Algorithms – Inserting an Element, Unordered 

  

    

    When you need to insert an element into a 

vector whose elements are not in any order… 

 

    …oh, this is going to be so easy: 

 

 
values.push_back(new_element); 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Common Algorithms – Inserting an Element, Ordered 

  

    

    However when the elements in a vector are in some order, 

it’s a bit more complicated, just like it was in the array version. 
 

    Of course you must know the position, say pos, where 

you will insert the new element. 
 

    As in the array version, 

you need to move all the elements ―up‖. 
 

for (int i = last_pos; i > pos; i--) 

{ 

   values[ i ] = values[i - 1]; 

} 

       WAIT!!! 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Common Algorithms – Inserting an Element, Ordered 

  

    

 

You can’t do that! 
 

In a vector you cannot assign 

to the position after the last one! 

 

You cannot assign to any position bigger than 
 

values() – 1.  

 

                                   OH DEAR!!! 

 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Common Algorithms – Inserting an Element, Ordered 

  

    

     

  Somehow you need to make 

  the vector one bigger 

 

  before you do the moving.  

 

     



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Common Algorithms – Inserting an Element, Ordered 

  

    

   Be clever. 

 

   If you push_back the last element: 

 
int last_pos = values.size() - 1; 

values.push_back(values[last_pos]); 

 

 

 

                                                               …but, but…    



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Common Algorithms – Inserting an Element, Ordered 

  

    

   Yes, it will be in the vector twice, 

 

   but why care? 

 
int last_pos = values.size() - 1; 

values.push_back(values[last_pos]); 

 

You will overwrite it by doing the moving. 

    



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Common Algorithms – Inserting an Element, Ordered 

  

    

   And, more importantly, 

   the vector is now one larger after the push_back. 

   Congratulations, it’s to safe go ahead and start moving. 

 
int last_pos = values.size() - 1; 

values.push_back(values[last_pos]); 

for (int i = last_pos; i > pos; i--) 

{ 

   values[i] = values[i - 1]; 

} 

values[pos] = new_element; 
 

   And don’t forget to insert the new element. 

   That’s what you’ve been trying to do all along! 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Common Algorithms – Inserting an Element, Ordered 

  

    

     

   Ah. 

  

 
int last_pos = values.size() - 1; 

values.push_back(values[last_pos]); 

for (int i = last_pos; i > pos; i--) 

{ 

   values[i] = values[i - 1]; 

} 

values[pos] = new_element; 

 

     

     



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Common Algorithms – Inserting an Element, Ordered 

  

    

    But don’t be too clever, 

    if the position to insert the new element 

is after the last element… 

 

    …oh, this is going to be so easy, 
                                don’t do any moving, just put it there: 

 
 

values.push_back(new_element); 

 

 

    Inserting into an ordered vector means 
inserting into the middle of the vector! 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Sorting with the C++ Library 

 

Recall that you call the sort function 

to do your sorting for you. 

This can be used on vectors also. 
 

The syntax for vectors is even more unusual than arrays: 

 

 

 

 

 Go ahead and use it as you like. 
But don’t forget to #include <algorithm>  

 

 

sort(values.begin(), values.end()); 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Arrays or Vectors? That Is the Question 

  

    

 

 

 

Should you use arrays or vectors? 

 

 

(you know you want to say vectors…) 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Arrays or Vectors? That Is the Question 

  

     

   For most programming tasks, 
vectors are easier to use than arrays. 

 

 

 

 

 

   
(say vectors, say vectors…) 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Arrays or Vectors? That Is the Question 

  

    

 

 

 

     Vectors can grow and shrink. 

 

 

 

 

 

  
(grow, shrink - think: vectors…) 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Arrays or Vectors? That Is the Question 

  

    

 

 

   Even if a vector always stays the same size, 
it is convenient that a vector remembers its size. 

 

     No chance of missing auxiliaries. 

 

     Vectors are smarter then arrays! 

(size matters and vectors know their own - vectors…) 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Arrays or Vectors? That Is the Question 

  

    

 

 

 

  For a beginner, the sole advantage of 
an array is the initialization syntax. 

(syntax, shmyntax – it’s easy too with vectors…) 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Arrays or Vectors? That Is the Question 

  

    

 

    Advanced programmers sometimes prefer arrays 
   because they are a bit more efficient. 

 
   Moreover, you need to know how to use 

arrays if you work with older programs 

(only a bit? and older? why not be current by using vectors…) 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

Prefer Vectors over Arrays 

  

    

 

 

 So: 

 

Prefer Vectors over Arrays  

 

(it’s so nice when the moral of the story is: vectors!!!) 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

CHAPTER SUMMARY 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

CHAPTER SUMMARY 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

CHAPTER SUMMARY 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

CHAPTER SUMMARY 



C++ for Everyone by Cay Horstmann 

Copyright © 2012 by John Wiley & Sons. All rights reserved 

End Arrays and Vectors II  

Slides by Evan Gallagher & Nikolay Kirov 


