
C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Six: Arrays and Vectors I

Slides by Evan Gallagher & Nikolay Kirov

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

• To become familiar with using arrays to collect values

• To learn about common algorithms for processing

arrays

• To write functions that receive and return arrays

Lecture Goals

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

 Mail, mail and more mail – how to manage it?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Vectors

• When you need to work with a large number of values –
all together, the vector construct is your best choice.

• By using a vector you

– can conveniently manage collections of data

– do not worry about the details of how they are stored

– do not worry about how many are in the vector

• a vector automatically grows to any desired size

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays

• Arrays are a lower-level construct

• The array is

– less convenient

– but sometimes required

• for efficiency

• for compatibility with older software

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

 All the mail these days seems alike: junk!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

 In both vectors and arrays,

the stored data is of

the same type

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

 Think of a sequence of data:

 32 54 67.5 29 35 80 115 44.5 100 65

 (all of the same type, of course)

 (storable as doubles)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

 32 54 67.5 29 35 80 115 44.5 100 65

 Which is the largest in this set?

 (You must look at every single value to decide.)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

 32 54 67.5 29 35 80 115 44.5 100 65

 So you would create a variable for each,

of course!

 int n1, n2, n3, n4, n5, n6, n7, n8, n9, n10;

 Then what ???

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

You can easily visit each element in an array or in a vector,

checking and updating a variable holding the current maximum.

Hm. Is this the max, so far?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

Maybe this one?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

Or this one?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

Or this one?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

How about here?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

Gotta check here too!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

Again, maybe this one?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

Or this one?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

Or this one?

 Will this never end!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

Or the last one? Finally!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays and Vectors

That would have been impossible with ten separate variables!

 int n1, n2, n3, n4, n5, n6, n7, n8, n9, n10;

And what if there needed to be another double in the set?

 ARGH!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Defining Arrays

An “array of double”

Ten elements of double type
can be stored under one name

as an array.

double values[10];

type of each element

quantity of elements – the “size” of the array,

must be a constant

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Defining Arrays with Initialization

 When you define an array, you can specify the initial values:

 double values[] = { 32, 54, 67.5, 29, 35, 80, 115, 44.5, 100, 65 };

32.0

54.0

67.5

29.0

35.0

80.0

115.0

44.5

100.0

65.0

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Accessing an Array Element

An array element can be used like any variable.

To access an array element, you use the notation:

values[i]

where i is the index.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Accessing an Array Element

Put the junk mail in there
in mailboxes[356]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

32.0

54.0

67.5

29.0

35.0

80.0

115.0

44.5

100.0

65.0

Accessing an Array Element

To access the element at index 4 using this notation: values[4]
 4 is the index.

 double values[10];

 ...

 cout << values[4] << endl;

 The output will be 35.0.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

32.0

54.0

67.5

29.0

35.0

80.0

115.0

44.5

100.0

65.0

Accessing an Array Element

 The same notation can be used to change the element.

 values[4] = 17.7;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

32.0

54.0

67.5

29.0

17.7

80.0

115.0

44.5

100.0

65.0

Accessing an Array Element

 The same notation can be used to change the element.

 values[4] = 17.7;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

32.0

54.0

67.5

29.0

17.7

80.0

115.0

44.5

100.0

65.0

Accessing an Array Element

 The same notation can be used to change the element.

 values[4] = 17.7;

 cout << values[4] << endl;

 The output will be 17.7.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Accessing an Array Element

 You might have thought those last two slides were wrong:
values[4] is getting the data from the “fifth” element.

 cout << values[4] << endl;

 In C++ and most computer
 languages, indexing starts with 0.

32.0

54.0

67.5

29.0

17.7

80.0

115.0

44.5

100.0

65.0

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Accessing an Array Element

That is, the legal elements for the values array are:

 values[0], the first element

 values[1], the second element

 values[2], the third element

 values[3], the fourth element

 values[4], the fifth element

 ...

 values[9], the tenth and last legal element
 recall: double values[10];

The index must be >= 0 and <= 9.

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 is 10 numbers.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Array Syntax

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Array Syntax

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Partially-Filled Arrays

 Suppose an array can hold 10 elements:

 Does it always?

 Just look at that beaker.

 Guess not!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Partially-Filled Arrays – Capacity

How many elements, at most, can an array hold?

We call this quantity the capacity.

capacity

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Partially-Filled Arrays – Capacity

 For example, we may decide for a particular problem

that there are usually ten or 11 values, but never more than 100.

We would set the capacity with a const:

const int CAPACITY = 100;

double values[CAPACITY];

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Partially-Filled Arrays

Arrays will usually hold less than CAPACITY elements.

We call this kind of array a partially filled array :

CAPACITY

only partially filled to here

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Partially-Filled Arrays – Companion Variable for Size

 But how many actual elements are

 there in a partially filled array?

We will use a companion variable to hold that amount:

Suppose we add four elements to the array?

const int CAPACITY = 100;

double values[CAPACITY];

int current_size = 0; // array is empty

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Partially-Filled Arrays – Companion Variable for Size

 const int CAPACITY = 100;

double values[CAPACITY];

current_size = 4; // array now holds 4

CAPACITY

current_size

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Partially-Filled Arrays – Companion Variable for Size

 const int CAPACITY = 100;

double values[CAPACITY];

current_size = 4; // array now holds 4

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Partially-Filled Arrays – Capacity

The following loop fills an array with user input.
Each time the size of the array changes we update this variable:

const int CAPACITY = 100;

double values[CAPACITY];

int size = 0;
double input;

while (cin >> input)

{

 if (size < CAPACITY)

 {

 values[size] = x;

 size++;

 }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Partially-Filled Arrays – Capacity

The following loop fills an array with user input.
Each time the size of the array changes we update this variable:

const int CAPACITY = 100;

double values[CAPACITY];

int size = 0;
double input;

while (cin >> input)

{

 if (size < CAPACITY)

 {

 values[size] = x;

 size++;

 }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Partially-Filled Arrays – Capacity

When the loop ends, the companion variable size
has the number of elements in the array.

const int CAPACITY = 100;

double values[CAPACITY];

int size = 0;
double input;

while (cin >> input)

{

 if (size < CAPACITY)

 {

 values[size] = x;

 size++;

 }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Partially-Filled Arrays – Capacity

How would you print the elements in a partially filled array?

By using the current_size companion variable.

for (int i = 0; i < current_size; i++)

{
 cout << values[i] << endl;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays – Visiting All Elements

 To visit all elements of an array, use a variable for the index.

 A for loop’s variable is best:

 for (int i = 0; i < CAPACITY; i++)
{
 cout << values[i] << endl;

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays – Visiting All Elements

 To visit all elements of an array, use a variable for the index.

 A for loop’s variable is best:

 for (int i = 0; i < CAPACITY; i++)
{
 cout << values[i] << endl;

 }

 When i is 0,

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 To visit all elements of an array, use a variable for the index.

 A for loop’s variable is best:

 for (int i = 0; i < CAPACITY; i++)
{
 cout << values[0] << endl;

 }

 When i is 0, values[i] is values[0], the first element.

Using Arrays – Visiting All Elements

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays – Visiting All Elements

 To visit all elements of an array, use a variable for the index.

 A for loop’s variable is best:

 for (int i = 0; i < CAPACITY; i++)
{
 cout << values[i] << endl;

 }

 When i is 0, values[i] is values[0], the first element.

 When i is 1,

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 To visit all elements of an array, use a variable for the index.

 A for loop’s variable is best:

 for (int i = 0; i < CAPACITY; i++)
{
 cout << values[1] << endl;

 }

 When i is 0, values[i] is values[0], the first element.

 When i is 1, values[i] is values[1], the second element.

Using Arrays – Visiting All Elements

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays – Visiting All Elements

 To visit all elements of an array, use a variable for the index.

 A for loop’s variable is best:

 for (int i = 0; i < CAPACITY; i++)
{
 cout << values[i] << endl;

 }

 When i is 0, values[i] is values[0], the first element.

 When i is 1, values[i] is values[1], the second element.

 When i is 2,

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays – Visiting All Elements

 To visit all elements of an array, use a variable for the index.

 A for loop’s variable is best:

 for (int i = 0; i < CAPACITY; i++)
{
 cout << values[2] << endl;

 }

 When i is 0, values[i] is values[0], the first element.

 When i is 1, values[i] is values[1], the second element.

 When i is 2, values[i] is values[2], the third element.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays – Visiting All Elements

 To visit all elements of an array, use a variable for the index.

 A for loop’s variable is best:

 for (int i = 0; i < CAPACITY; i++)
{
 cout << values[i] << endl;

 }

 When i is 0, values[i] is values[0], the first element.

 When i is 1, values[i] is values[1], the second element.

 When i is 2, values[i] is values[2], the third element.
…

 When i is 9,

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 To visit all elements of an array, use a variable for the index.

 A for loop’s variable is best:

 for (int i = 0; i < CAPACITY; i++)
{
 cout << values[9] << endl;

 }

 When i is 0, values[i] is values[0], the first element.

 When i is 1, values[i] is values[1], the second element.

 When i is 2, values[i] is values[2], the third element.
…

 When i is 9, values[i] is values[9],
 the last legal element.

Using Arrays – Visiting All Elements

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Arrays – Visiting All Elements

 To visit all elements of an array, use a variable for the index.

 A for loop’s variable is best:

 for (int i = 0; i < CAPACITY; i++)
{
 cout << values[i] << endl;

 }

 Note that the loop condition is that the index is

 less than CAPACITY

 because there is no element corresponding to values [10].

 But CAPACITY (10) is the number of elements we want to visit.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Illegally Accessing an Array Element – Bounds Error

 A bounds error occurs when you access
an element outside the legal set of indices:

 cout << values[10];

 Doing this can corrupt data
or cause your program to terminate.

DANGER!!!

DANGER!!!

DANGER!!!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Use Arrays for Sequences of Related Values

Recall that the type of every element must be the same.

That implies that the “meaning” of each stored value is the same.

int scores[NUMBER_OF_SCORES];

Clearly the meaning of each element is a score.

(even if it is a bad score, it’s still a score)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Use Arrays for Sequences of Related Values

But an array could be used improperly:

 double personal_data[3];

 personal_data[0] = age;

 personal_data[1] = bank_account;

 personal_data[2] = shoe_size;

Clearly these doubles do not have the same meaning!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Use Arrays for Sequences of Related Values

But worse:

 personal_data[] = new_shoe_size;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Use Arrays for Sequences of Related Values

But worse:

 personal_data[?] = new_shoe_size;

Oh dear!

Which position was I using for the shoe size?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Use Arrays for Sequences of Related Values

 Arrays should be used when

the meaning of each element is the same.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Array and Vector Algorithms

 There are many typical things that are
done with sequences of values.

 There many common algorithms
for processing values stored
in both arrays and vectors.

 (We will get to vectors a bit later
but the algorithms are the same)

Did someone

mention

algorithms?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Filling

 This loop fills an array with zeros:

 for (int i = 0; i < size of values; i++)
{
 values[i] = 0;
}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Filling

 Here, we fill the array with squares (0, 1, 4, 9, 16, ...).

 Note that the element with index 0 will contain 02,

 the element with index 1 will contain 12, and so on.

for (int i = 0; i < size of squares; i++)
{
 squares[i] = i * i;
}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Copying

 Consider these two arrays:

int squares[5] = { 0, 1, 4, 9, 16 };

int lucky_numbers[5];

 How can we copy the values
 from squares
 to lucky_numbers?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Copying

 Let’s try what seems right and easy…

squares = lucky_numbers;

 …and wrong!

 You cannot assign arrays!

 You will have to do your own work, son.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Copying

int squares[5] = { 0, 1, 4, 9, 16 };

int lucky_numbers[5];

for (int i = 0; i < 5; i++)
{
 lucky_numbers[i] = squares[i];
}

 when i is 0

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Copying

int squares[5] = { 0, 1, 4, 9, 16 };

int lucky_numbers[5];

for (int i = 0; i < 5; i++)
{
 lucky_numbers[i] = squares[i];
}

 when i is 0

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Copying

int squares[5] = { 0, 1, 4, 9, 16 };

int lucky_numbers[5];

for (int i = 0; i < 5; i++)
{
 lucky_numbers[i] = squares[i];
}

 when i is 1

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Copying

int squares[5] = { 0, 1, 4, 9, 16 };

int lucky_numbers[5];

for (int i = 0; i < 5; i++)
{
 lucky_numbers[i] = squares[i];
}

 when i is 1

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Copying

int squares[5] = { 0, 1, 4, 9, 16 };

int lucky_numbers[5];

for (int i = 0; i < 5; i++)
{
 lucky_numbers[i] = squares[i];
}

 when i is 2

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Copying

int squares[5] = { 0, 1, 4, 9, 16 };

int lucky_numbers[5];

for (int i = 0; i < 5; i++)
{
 lucky_numbers[i] = squares[i];
}

 when i is 2

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Copying

int squares[5] = { 0, 1, 4, 9, 16 };

int lucky_numbers[5];

for (int i = 0; i < 5; i++)
{
 lucky_numbers[i] = squares[i];
}

 when i is 3

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Copying

int squares[5] = { 0, 1, 4, 9, 16 };

int lucky_numbers[5];

for (int i = 0; i < 5; i++)
{
 lucky_numbers[i] = squares[i];
}

 when i is 3

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Copying

int squares[5] = { 0, 1, 4, 9, 16 };

int lucky_numbers[5];

for (int i = 0; i < 5; i++)
{
 lucky_numbers[i] = squares[i];
}

 when i is 4

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Copying

int squares[5] = { 0, 1, 4, 9, 16 };

int lucky_numbers[5];

for (int i = 0; i < 5; i++)
{
 lucky_numbers[i] = squares[i];
}

 when i is 4

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Sum and Average Value

 You have already seen the algorithm
for computing the sum and average of set of data.
The algorithm is the same when the data is stored in an array.

 double total = 0;

 for (int i = 0; i < size of values; i++)
 {

 total = total + values[i];

 }

 The average is just arithmetic:

 double average = total / size of values;

Same algorithm

- different situation.

Aren’t algorithms great!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Maximum and Minimum

 To compute the largest value in a vector, keep a variable
that stores the largest element that you have encountered,
and update it when you find a larger one.

 double largest = values[0];

for (int i = 1; i < size of values; i++)
{
 if (values[i] > largest)
 {
 largest = values[i];
 }
}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Maximum and Minimum

 To compute the largest value in a vector, keep a variable
that stores the largest element that you have encountered,
and update it when you find a larger one.

 double largest = values[0];

for (int i = 1; i < size of values; i++)
{
 if (values[i] > largest)
 {
 largest = values[i];
 }
}

 Note that the loop starts at 1
 because we initialize largest with data[0].

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Maximum and Minimum

 For the minimum, we just reverse the comparison.

 double smallest = values[0];

for (int i = 1; i < size of values; i++)
{
 if (values[i] < smallest)
 {
 smallest = values[i];
 }
}

These algorithms require that the array

contain at least one element.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Element Separators

 When you display the elements of a vector, you usually
want to separate them, often with commas or vertical lines,
like this:

 1 | 4 | 9 | 16 | 25

 Note that there is one fewer separator than there are
numbers.

 To print five elements,

 you need four separators.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Element Separators

 Print the separator before each element
except the initial one (with index 0):

 1 | 4 | 9 | 16 | 25

 for (int i = 0; i < size of values; i++)
{
 if (i > 0)
 {
 cout << " | ";
 }

 cout << values[i];

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Linear Search

 Find the position of a certain value, say 100, in an array:

int pos = 0;

bool found = false;

while (pos < size of values && !found)
{

 if (values[pos] == 100) // looking for 100

 {

 found = true;

 }

 else

 {

 pos++;

 }

}

 Don’t get these tests

in the wrong order!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Removing an Element, Unordered

 Suppose you want to remove the element at index i.

 If the elements in the vector are not in any particular order,
that task is easy to accomplish.

 Simply overwrite the element to be removed with the last
element of the vector, then shrink the size of the vector by
removing the value that was copied.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Removing an Element, Unordered

 values[pos] = values[current_size - 1];

 current_size--;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Removing an Element, Ordered

 The situation is more complex
if the order of the elements matters.

 Then you must move all elements following the element to
be removed “down” (to a lower index), and then shrink the

size of the vector by removing the last element.

for (int i = pos + 1; i < current_size; i++)

{

 values[i - 1] = values[i];

}

current_size--;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Removing an Element, Ordered

for (int i = pos + 1; i < current_size; i++)

{

 values[i - 1] = values[i];

}

current_size--;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Inserting an Element Unordered

 If the order of the elements does not matter, in a partially
filled array (which is the only kind you can insert into),

you can simply insert a new element at the end.

 if (current_size < CAPACITY)

 {

 current_size++;

 values[current_size - 1] = new_element;

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Inserting an Element Ordered

 If the order of the elements does matter, it is a bit harder.

 To insert an element at position i, all elements from that
location to the end of the vector must be moved “up”.

 After that, insert the new element at the now vacant
position [i].

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Inserting an Element Ordered

 First, you must make the array one larger
by incrementing current_size.

 Next, move all elements above the
insertion location to a higher index.

 Finally, insert the new element
in the place you made for it.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Inserting an Element Ordered

if (current_size < CAPACITY)

{

 current_size++;

 for (int i = current_size - 1; i > pos; i--)

 {

 values[i] = values[i - 1];

 }

 values[pos] = new_element;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Swapping Elements

 Swapping two elements in an array
is an important part of sorting an array.

 To do a swap of two things,
you need three things!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Swapping Elements

 Suppose we need to swap the values at
positions i and j in the array.
Will this work?

 values[i] = values[j];

 values[j] = values[i];

 Look closely!

 In the first line you lost – forever! – the value at i,
replacing it with the value at j.

 Then what?

 Put’ j’s value back in j in the second line?

 ARGHHH!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Swapping Elements

 You need a third dance partner!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Swapping Elements

Let’s

Waltz!

go, 2, 3,

1, 2, 3,

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Swapping Elements

 double temp = values[i];

 values[i] = values[j];

 values[j] = temp;

STEP One, 2, 3

STEP Two, 2, 3

STEP Three, 2, 3

save the
value at i

replace the
value at i

now you can
change the
 value at j
 because you
 saved from i.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Reading Input

 If the know how many input values the user will supply,
you can store them directly into the array:

 double values[NUMBER_OF_INPUTS];

 for (i = 0; i < NUMBER_OF_INPUTS; i++)

 {

 cin >> values[i];

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Reading Input

 When there will be an arbitrary number of inputs,
things get more complicated.

But not hopeless.

Add values to the end of the array until all inputs have been made.

Again, the companion variable will have the number of inputs.

 double values[CAPACITY];

 int current_size = 0;

 double input;

 while (cin >> input)

 {

 if (current_size < CAPACITY)

 {

 values[current_size] = input;

 current_size++;

 }

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Reading Input

 Unfortunately it’s even more complicated:

 Once the array is full, we allow the user to keep entering!

 Because we can’t change the size
of an array after it has been created,

we’ll just have to give up for now.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms

 Now back to where we started:

How do we determine the largest in a set of data?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Maximum

#include <iostream>

using namespace std;

int main()

{

 const int CAPACITY = 1000;

 double values[CAPACITY];

 int current_size = 0;

ch06/largest.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Maximum

 cout << "Please enter values, Q to quit:" << endl;

 double input;

 while (cin >> input)

 {

 if (current_size < CAPACITY)

 {

 values[current_size] = input;

 current_size++;

 }

 }

ch06/largest.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Maximum

 double largest = values[0];

 for (int i = 1; i < current_size; i++)

 {

 if (values[i] > largest)

 {

 largest = values[i];

 }

 }

ch06/largest.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Algorithms – Maximum

 for (int i = 0; i < current_size; i++)

 {

 cout << values[i];

 if (values[i] == largest)

 {

 cout << " <== largest value";

 }

 cout << endl;

 }

 return 0;

}

ch06/largest.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Sorting with the C++ Library

Getting data into order is something that is often needed.

An alphabetical listing.

A list of grades in descending order.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Sorting with the C++ Library

 In C++, you call the sort function

to do your sorting for you.

 But the syntax is new to you:

 Recall our values array

with the companion variable current_size.

To sort the elements into ascending numerical order,
you call the sort algorithm:

sort(values, values + current_size);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Sorting with the C++ Library

You will need to write:

 #include <algorithm>

 in order to use the sort function.

sort(values, values + current_size);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Sorting with the C++ Library

 Notice also that you must tell the sort function

 where to begin: values,

(which is the start of the array)

 and where to end: values + current_size,

(which is one after the last element in the array).

sort(values, values + current_size);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 Recall that when we work with arrays

we use a companion variable.

 The same concept applies when

using arrays as parameters:

 You must pass the size to the function

so it will know how many elements to work with.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 Here is the sum function with an array parameter:

Notice that to pass one array, it takes two parameters.

 double sum(double data[], int size)

 {

 double total = 0;

 for (int i = 0; i < size; i++)

 {

 total = total + data[i];

 }

 return total;

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 No, that is not a box!

 double sum(double data[], int size)

 {

 double total = 0;

 for (int i = 0; i < size; i++)

 {

 total = total + data[i];

 }

 return total;

 }

 It is an empty pair of square brackets.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 You use an empty pair of square brackets

 after the parameter variable’s name to

indicate you are passing an array.

 double sum(double data[], int size)

 Hear Ye!

Know Ye!

This be an

array! And THIS

BE ITS SIZE

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 double sum(double data[], int size)

 Ne’er err!

 Proffer both - THUSLY!

 Fail ye not to

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 When you call the function,

supply both the name of the array and the size:

double NUMBER_OF_SCORES = 10;

double scores[NUMBER_OF_SCORES]

 = { 32, 54, 67.5, 29, 34.5, 80, 115, 44.5, 100, 65 };

double total_score = sum(scores, NUMBER_OF_SCORES);

 You can also pass a smaller size to the function:

double partial_score = sum(scores, 5);

 This will sum over only the first five doubles in the array.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

When you pass an array into a function,

the contents of the array can always be changed:

 void multiply(double values[], int size, double factor)

{

 for (int i = 0; i < size; i++)

 {

 values[i] = values[i] * factor;

 }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 And writing an ampersand is always an error:

 void multiply1(double& values[], int size, double factor)

{

 for (int i = 0; i < size; i++)

 {

 values[i] = values[i] * factor;

 }

}

 void multiply2(double values[]&, int size, double factor)

{

 for (int i = 0; i < size; i++)

 {

 values[i] = values[i] * factor;

 }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 And writing an ampersand is always an error:

 void multiply1(double& values[], int size, double factor)

{

 for (int i = 0; i < size; i++)

 {

 values[i] = values[i] * factor;

 }

}

 void multiply2(double values[]&, int size, double factor)

{

 for (int i = 0; i < size; i++)

 {

 values[i] = values[i] * factor;

 }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 You can pass an array into a function

but

 you cannot return an array.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 If you cannot return an array, how can the caller get the data?

 ??? squares(int n)
 {

 int result[]

 for (int i = 0; i < n; i++)

 {

 result[i] = i * i;

 }

 return result; // ERROR

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 The caller must provide an array to be used:

 void squares(int n, int result[])

 {

 for (int i = 0; i < n; i++)

 {

 result[i] = i * i;

 }

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 A function can change the size of an array.

 It should let the caller know of any change
by returning the new size.

int read_inputs(double inputs[], int capacity)

{

 int current_size = 0;

 double input;

 while (cin >> input)

 {

 if (current_size < capacity)

 {

 inputs[current_size] = input;

 current_size++;

 }

 }

 return current_size;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 Here is a call to the function:

const int MAXIMUM_NUMBER_OF_VALUES = 1000;

double values[MAXIMUM_NUMBER_OF_VALUES];

int current_size =

 read_inputs(values, MAXIMUM_NUMBER_OF_VALUES);

 After the call,
 the current_size variable
 specifies how many were added.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 Or it can let the caller know by using a

 reference parameter:

void append_inputs(double inputs[], int capacity,

 int& current_size)

{

 double input;

 while (cin >> input)

 {
 if (current_size < capacity)

 {

 inputs[current_size] = input;

 current_size++;

 }

 }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 Here is a call to the reference parameter
version of append_inputs:

append_inputs(values, MAXIMUM_NUMBER_OF_VALUES,

 current_size);

 As before, after the call,
 the current_size variable
 specifies how many are in the array.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 The following program uses the preceding functions to read

values from standard input, double them, and print the result.

 • The read_inputs function fills an array with the input values.

 It returns the number of elements that were read.

 • The multiply function modifies the contents of the array that

 it receives, demonstrating that arrays can be changed inside

 the function to which they are passed.

 • The print function does not modify the contents of the array

 that it receives.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

#include <iostream>

using namespace std;

/**

Reads a sequence of floating-point numbers.

@param inputs an array containing the numbers

@param capacity the capacity of that array

@return the number of inputs stored in the array

*/

int read_inputs(double inputs[], int capacity)

{

 int current_size = 0;

 cout << "Please enter values, Q to quit:" << endl;

 bool more = true;

 while (more)

 {

ch06/functions.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

 double input;

 cin >> input;

 if (cin.fail())

 {

 more = false;

 }

 else if (current_size < capacity)

 {

 inputs[current_size] = input;

 current_size++;

 }

 }

 return current_size;

}

ch06/functions.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

/**

Multiplies all elements of an array by a factor.

@param values a partially filled array

@param size the number of elements in values

@param factor the value with which each element is
multiplied

*/

void multiply(double values[], int size,

 double factor)

{

 for (int i = 0; i < size; i++)

 {

 values[i] = values[i] * factor;

 }

}

ch06/functions.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

/**

Prints the elements of a vector, separated by commas.

@param values a partially filled array

@param size the number of elements in values

*/

void print(double values[], int size)

{

 for (int i = 0; i < size; i++)

 {

 if (i > 0) { cout << ", "; }

 cout << values[i];

 }

 cout << endl;

}

ch06/functions.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays as Parameters in Functions

int main()

{

 const int CAPACITY = 1000;

 double values[CAPACITY];

 int size = read_inputs(values, CAPACITY);

 multiply(values, size, 2);

 print(values, size);

 return 0;

}

ch06/functions.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

End Arrays and Vectors I

Slides by Evan Gallagher & Nikolay Kirov

