
C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Five: Functions II

Slides by Evan Gallagher & Nikolay Kirov

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

• To develop strategies for decomposing complex tasks
into simpler ones

• To be able to determine the scope of a variable

• To recognize when to use value and reference
parameters

Lecture Goals

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

• One of the most powerful strategies for problem solving

is the process of stepwise refinement.

• To solve a difficult task, break it down into simpler tasks.

• Then keep breaking down the simpler tasks into even

simpler ones, until you are left with tasks that you know

how to solve.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

 Use the process of stepwise refinement

to decompose complex tasks into simpler ones.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

We will break this problem into steps

(and for then those steps that can be

further broken, we’ll break them)

(and for then those steps that can be

further broken, we’ll break them)

(and for then those steps that can be

further broken, we’ll break them)

(and for then those steps that can be

further broken, we’ll break them)

… and so on…

until the sub-problems are small enough to be just a few steps

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

 When writing a check by hand the recipient might be

tempted to add a few digits in front of the amount.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

 To discourage this, when printing a check,

it is customary to write the check amount both

as a number (―$274.15‖) and as a text string

(―two hundred seventy four dollars and 15 cents‖)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

We will a program to take an amount and produce the text.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

We will a program to take an amount and produce the text.

(Darn!)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

We will a program to take an amount and produce the text.

(Darn!)

And practice stepwise refinement.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

 Sometimes we reduce the problem a bit when we start:

we will only deal with amounts less than $1,000.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

 Of course we will write a function to solve this sub-problem.

/**

Turns a number into its English name.

@param number a positive integer < 1000

@return the name of number (e.g., "two hundred seventy four")

*/

string int_name(int number)

 Notice that we started by writing only the comment and the
first line of the function.

Also notice that the constraint of < $1000 is announced in
the comment.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

 Before starting to write this function, we need to have a plan.

 Are there special considerations?

 Are there subparts?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

 If the number is between 1 and 9,

 we need to compute "one" … "nine".

 In fact, we need the same computation
again for the hundreds (―two‖ hundred).

 Any time you need to do something more than once,

 it is a good idea to turn that into a function:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

/**

 Turns a digit into its English name.

 @param digit an integer between 1 and 9

 @return the name of digit (“one” ... “nine”)

*/

string digit_name(int digit)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

 Numbers between 10 and 19 are special cases.

 Let’s have a separate function teen_name that converts
them into strings "eleven", "twelve", "thirteen", and so on:

/**

Turns a number between 10 and 19 into its English

name.

@param number an integer between 10 and 19

@return the name of the number (“ten” ...

“nineteen”)

*/

string teen_name(int number)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

 Next, suppose that the number is between 20 and 99.

 Then we show the tens as "twenty", "thirty", …, "ninety".

 For simplicity and consistency, put that computation into

 a separate function:

 /**

 Gives the name of the tens part of a number between 20 and 99.

 @param number an integer between 20 and 99

 @return the name of the tens part of the number ("twenty"..."ninety")

 */

 string tens_name(int number))

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement

• Now suppose the number is at least 20 and at most 99.

– If the number is evenly divisible by 10, we use
tens_name, and we are done.

– Otherwise, we print the tens with tens_name and the

ones with digit_name.

• If the number is between 100 and 999,

– then we show a digit, the word "hundred", and the

remainder as described previously.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement – The Pseudocode

part = number (The part that still needs to be converted)

name = "" (The name of the number starts as the empty
string)

If part >= 100

 name = name of hundreds in part + " hundred"

 Remove hundreds from part

If part >= 20

 Append tens_name(part) to name

 Remove tens from part.

Else if part >= 10

 Append teen_name(part) to name

 part = 0

If (part > 0)

 Append digit_name(part) to name.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement – The Pseudocode

• This pseudocode has a number of important improvements
over the descriptions and comments.

– It shows how to arrange the order of the tests, starting
with the comparisons against the larger numbers

– It shows how the smaller number is subsequently
processed in further if statements.

• On the other hand, this pseudocode is vague about:

– The actual conversion of the pieces,
just referring to ―name of hundreds‖ and the like.

– Spaces—it would produce strings with no spaces:
 ―twohundredseventyfour

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement – The Pseudocode

 Compared to the complexity of the main problem,
one would hope that spaces are a minor issue.

It is best not to muddy the pseudocode with minor details.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement – Pseudocode to C++

 Now for the real code.
The last three cases are easy so let’s start with them:

 if (part >= 20)

 {

 name = name + " " + tens_name(part);

 part = part % 10;

 }

 else if (part >= 10)

 {

 name = name + " " + teen_name(part);

 part = 0;

 }

 if (part > 0)

 {

 name = name + " " + digit_name(part);

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement – Pseudocode to C++

 Finally, the case of numbers between 100 and 999.
Because part < 1000, part / 100 is a single digit,
and we obtain its name by calling digit_name.
Then we add the ―hundred‖ suffix:

 if (part >= 100)

 {

 name = digit_name(part / 100) + " hundred";

 part = part % 100;

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stepwise Refinement – Pseudocode to C++

 Now for the complete program.

#include <iostream>

#include <string>

using namespace std;

ch05/intname.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Complete Program

/**

 Turns a digit into its English name.

 @param digit an integer between 1 and 9

 @return the name of digit ("one" ... "nine")

*/

string digit_name(int digit)

{

 if (digit == 1) return "one";

 if (digit == 2) return "two";

 if (digit == 3) return "three";

 if (digit == 4) return "four";

 if (digit == 5) return "five";

 if (digit == 6) return "six";

 if (digit == 7) return "seven";

 if (digit == 8) return "eight";

 if (digit == 9) return "nine";

 return "";

}

ch05/intname.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Complete Program

/**

 Turns a number between 10 and 19 into its English name.

 @param number an integer between 10 and 19

 @return the name of the given number ("ten" ... "nineteen")

*/

string teens_name(int number)

{

 if (number == 10) return "ten";

 if (number == 11) return "eleven";

 if (number == 12) return "twelve";

 if (number == 13) return "thirteen";

 if (number == 14) return "fourteen";

 if (number == 15) return "fifteen";

 if (number == 16) return "sixteen";

 if (number == 17) return "seventeen";

 if (number == 18) return "eighteen";

 if (number == 19) return "nineteen";

 return "";

}

ch05/intname.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Complete Program

/**

 Gives the name of the tens part of a number between 20 and 99.

 @param number an integer between 20 and 99

 @return the name of the tens part of the number ("twenty" ...

"ninety")

*/

string tens_name(int number)

{

 if (number >= 90) return "ninety";

 if (number >= 80) return "eighty";

 if (number >= 70) return "seventy";

 if (number >= 60) return "sixty";

 if (number >= 50) return "fifty";

 if (number >= 40) return "forty";

 if (number >= 30) return "thirty";

 if (number >= 20) return "twenty";

 return "";

}

ch05/intname.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Complete Program

/**

 Turns a number into its English name.

 @param number a positive integer < 1,000

 @return the name of the number (e.g. "two hundred seventy four")

*/

string int_name(int number)

{

 int part = number; // The part that still needs to be converted

 string name; // The return value

 if (part >= 100)

 {

 name = digit_name(part / 100) + " hundred";

 part = part % 100;

 }

 if (part >= 20)

 {

 name = name + " " + tens_name(part);

 part = part % 10;

 }

ch05/intname.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Complete Program

 else if (part >= 10)

 {

 name = name + " " + teens_name(part);

 part = 0;

 }

 if (part > 0)

 {

 name = name + " " + digit_name(part);

 }

 return name;

}

int main()

{

 cout << "Please enter a positive integer: ";

 int input;

 cin >> input;

 cout << int_name(input) << endl;

 return 0;

}

ch05/intname.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Good Design – Keep Functions Short

• There is a certain cost for writing a function:

– You need to design, code, and test the function.

– The function needs to be documented.

– You need to spend some effort to make the function
reusable rather than tied to a specific context.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Good Design – Keep Functions Short

• And you should keep your functions short.

• As a rule of thumb, a function that is so long that its
will not fit on a single screen in your development
environment should probably be broken up.

• Break the code into other functions

Whew!

That ‘breaking’

word always

scares me

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Functions

 When you design a complex set of functions, it is a good

idea to carry out a manual walkthrough before entrusting

your program to the computer.

 This process is called tracing your code.

 You should trace each of your functions separately.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Functions

 To demonstrate, we will trace the int_name

 function when 416 is passed in.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Functions

 Here is the call: … int_name(416) …

 Take an index card (or use the back of an envelope)

and write the name of the function and the names and

values of the parameter variables, like this:

function

name

parameter

name

value from

caller

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Functions

 Then write the names and values of the function variables.

 string int_name(int number)

 {

 int part = number; // The part that still needs

 // to be converted

 string name; // The return value, initially ""

 Write them in a table, since you will update them as you

walk through the code:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Functions

 The test (part >= 100) is true so the code is executed.

 if (part >= 100)

 {

 name = digit_name(part / 100) + " hundred";

 part = part % 100;

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Functions

 part / 100 is 4

 so digit_name(4) is easily seen to be "four".

if (part >= 100)

 {

 name = digit_name(part / 100) + " hundred";

 part = part % 100;

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Functions

 part % 100 is 16.

if (part >= 100)

 {

 name = digit_name(part / 100) + " hundred";

 part = part % 100;

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Functions

 name has changed to

 name + " " + digit_name(part / 100) + "hundred“

 which is the string "four hundred",

 part has changed to part % 100, or 16.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Functions

 name has changed to

 name + " " + digit_name(part / 100) + "hundred“

 which is the string "four hundred",

 part has changed to part % 100, or 16.

 Cross out the old values and write the new ones.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Functions

 If digit_name’s parameter had been complicated,
you would have started another sheet of paper

to trace that function call.

 Your work table will probably be covered with
sheets of paper (or envelopes) by the time you
are done tracing!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Functions

Let’s continue…

Here is the status of the parameters and variables now:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Functions

 The test (part >= 20) is false but
 the test (part >= 10) is true so that code is executed.

if (part >= 20)…

else if (part >= 10) {

 name = name + " " + teens_name(part);

 part = 0;

 }

 teens_name(16) is ―sixteen‖, part is set to 0, so do this:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Functions

 Why is part set to 0?

if (part >= 20)…

else if (part >= 10) {

 name = name + " " + teens_name(part);

 part = 0;

 }

 if (part > 0)

 {

 name = name + " " + digit_name(part);

 }

 After the if-else statement ends, name is complete.

The test in the following if statement needs to be
―fixed‖ so that part of the code will not be executed

 - nothing should be added to name.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stubs

• When writing a larger program, it is not always feasible

to implement and test all functions at once.

• You often need to test a function that calls another, but

the other function hasn’t yet been implemented.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stubs

• You can temporarily replace the body of function yet to
be implemented with a stub.

• A stub is a function that returns a simple value that is
sufficient for testing another function.

• It might also have something written on the screen to
help you see the order of execution.

• Or, do both of these things.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stubs

Here are examples of stub functions.

/**

 Turns a digit into its English name.

 @param digit an integer between 1 and 9

 @return the name of digit (“one” ... “nine”)

*/

string digit_name(int digit)

{

 return "mumble";

}

/**

 Gives the name of the tens part of a number between 20 and 99.

 @param number an integer between 20 and 99

 @return the tens name of the number (“twenty” ... “ninety”)

*/

string tens_name(int number)

{

 return "mumblety";

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Stubs

 If you combine these stubs with the completely written
int_name function and run the program testing with
the value 274, this will the result:

Please enter a positive integer: 274

mumble hundred mumblety mumble

 which eveyone knows indicates that the basic logic
of the int_name function is working correctly.

(OK, only you know, but that is the important thing with stubs)

 Now that you have tested int_name, you would ―unstubify‖
another stub function, then another...

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Variable Scope

 ?

Variable Scope

 Which main?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Variable Scope

You can only have one main function

but you can have as many variables and parameters

spread amongst as many functions as you need.

Can you have the same name in different functions?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Variable Scope

The railway_avenue and

main_street variables in the

oklahoma_city function

The south_street and

main_street variables in

the panama_city function

The n_putnam_street and

main_street variables in the

new_york_city function

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Variable Scope

 A variable or parameter that is defined within a function

is visible from the point at which it is defined until

the end of the block named by the function.

This area is called the scope of the variable.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Variable Scope

 The scope of a variable is the part of the

program in which it is visible.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Variable Scope

 The scope of a variable is the part of the

program in which it is visible.

 Because scopes do not overlap,

a name in one scope cannot

conflict with any name in another scope.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Variable Scope

 The scope of a variable is the part of the

program in which it is visible.

 Because scopes do not overlap,

a name in one scope cannot

conflict with any name in another scope.

A name in one scope is ―invisible‖

in another scope

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Variable Scope

double cube_volume(double side_len)

{

 double volume = side_len * side_len * side_len;

 return volume;

}

int main()

{

 double volume = cube_volume(2);

 cout << volume << endl;

 return 0;

}

 Each volume variable is defined in a separate function,

so there is not a problem with this code.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Variable Scope

 Because of scope, when you are writing a function

you can focus on choosing variable and parameter

names that make sense for your function.

 You do not have to worry that your names will be

used elsewhere.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Variable Scope

 Names inside a block are called local to that block.

 A function names a block.

 Recall that variables and parameters do not exist after

the function is over—because they are local to that

block.

 But there are other blocks.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Variable Scope

 It is not legal to define two variables or parameters

with the same name in the same scope.

For example, the following is not legal:

int test(double volume)

{

 double volume = cube_volume(2);

 double volume = cube_volume(10);

// ERROR: cannot define another volume variable

// ERROR: or parameter in the same scope

...

}

ERRORS!!!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Variable Scope – Nested Blocks

 However, you can define another variable

with the same name in a nested block.

double withdraw(double balance, double amount)

{

 if (...)

 {

 double amount = 10;

 ...

 }

 ...

}

a variable named amount local to the if’s block

 – and a parameter variable named amount.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Variable Scope – Nested Blocks

 The scope of the parameter variable amount is the

entire function, except the nested block.

 Inside the nested block, amount refers to the local

variable that was defined in that block.

 You should avoid this potentially confusing situation

in the functions that you write, simply by

renaming one of the variables.

 Why should there be a variable

with the same name in the same function?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Global Variables

• Generally, global variables are not a good idea.

 But …

 here’s what they are and how to use them

 (if you must).

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Global Variables

Global variables are defined outside any block.

They are visible to every function defined after them.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Global Variables

 In some cases, this is a good thing:

 The <iostream> header defines these global variables:

 cin

 cout

 This is good because there should only be one of each
of these and every function who needs them should
have direct access to them.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Global Variables

 But in a banking program, how many functions should
have direct access to a balance variable?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Global Variables

int balance = 10000; // A global variable

void withdraw(double amount)

{

 if (balance >= amount)

 {

 balance = balance - amount;

 }

}

int main()

{

 withdraw(1000);

 cout << balance << endl;

 return 0;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Global Variables

 In the previous program there is only one
function that updates the balance variable.

 But there could be many, many, many
functions that might need to update
balance each written by any one of
a huge number of programmers in

a large company.

Then we would have a problem.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Global Variables

 When multiple functions update global variables,
the result can be difficult to predict.

 Particularly in larger programs that are developed by
multiple programmers, it is very important that the effect

of each function be clear and easy to understand.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Global Variables – Breaking Open the Black Box

When functions modify global variables, it becomes more
difficult to understand the effect of function calls.

Programs with global variables are difficult to maintain and
extend because you can no longer view each function as
a ―black box‖ that simply receives parameter values and
returns a result or does something.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Global Variables – Breaking Open the Black Box

When functions modify global variables, it becomes more
difficult to understand the effect of function calls.

Programs with global variables are difficult to maintain and
extend because you can no longer view each function as
a ―black box‖ that simply receives parameter values and
returns a result or does something.

 And what good is a broken black box?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Global Variables – Just Say “No”

 You should avoid global

variables in your programs!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

• Suppose you would like a function to get the user’s

last name and ID number.

• The variables for this data are in your scope.

• But you want the function to change them for you.

• If you want to write a function that changes the value

of a parameter, you must use a reference parameter.

Reference Parameters

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

 To understand the need for a different

 kind of parameter, you must first understand

 why the parameters you now know do not work.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

 Consider a function that simulates withdrawing a given
amount of money from a bank account, provided that
sufficient funds are available.

 If the amount of money is insufficient, a $10 penalty is
deducted instead.

The function would be used as follows:

double harrys_account = 1000;

withdraw(harrys_account, 100);

 // Now harrys_account is 900

withdraw(harrys_account, 1000);

 // Insufficient funds.

 // Now harrys_account is 890

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

Here is a first attempt:

void withdraw(double balance, double amount)

{

 const double PENALTY = 10;

 if (balance >= amount)

 {

 balance = balance - amount;

 }

 else

 {

 balance = balance - PENALTY;

 }

}

But this doesn’t work.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

 What is actually happening?

 Let’s call the function passing in 100 to be taken
from harrys_account.

double harrys_account = 1000;

withdraw(harrys_account, 100);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

The local variables, consts, and value parameters are initialized.

double harrys_account = 1000;

…

withdraw(harrys_account, 100);

…

void withdraw(double balance, double amount)

{

 const int PENALTY = 10;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

NOTHING happens to
harrys_balance because

it is a separate variable

(in a different scope)

!

Reference Parameters

The test is false, the LOCAL variable balance is updated

double harrys_account = 1000;

…

 else

 {

 balance = balance - amount;

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

The function call has ended.

Local names in the function are gone and…

withdraw(harrys_account, 100);

!

NOTHING happened to harrys_balance.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

 A reference parameter refers to a

variable that is supplied in a function call.

 ―refers‖ means that during the execution of the

function, the reference parameter name is

another name for the caller’s variable.

This ―referring‖ is how a function

can change non-local variables:

changes to its local parameters’

names cause changes to the

callers variables they ―refer‖ to.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

 To indicate a reference parameter,
you place an & after the type name.

To indicate a value parameter,
you do not place an & after the type name.

void withdraw(double& balance, double amount)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

Here is correct code, using reference parameters:

void withdraw(double& balance, double amount)

{

 const int PENALTY = 10;

 if (balance >= amount)

 {

 balance = balance - amount;

 }

 else

 {

 balance = balance - PENALTY;

 }

}

Let’s see this in action.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

 Now, using the function with reference parameters

let’s again call the function passing in 100 to
be taken from harrys_account.

double harrys_account = 1000;

withdraw(harrys_account, 100);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

Notice that balance now refers to harrys_account.

double harrys_account = 1000;

…

withdraw(harrys_account, 100);

…

void withdraw(double balance, double amount)

{

 const int PENALTY = 10;

harrys_account

and balance

 are both names

for this memory

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

 The test is false, the variable harrys_account
is updated when the reference parameter balance
is assigned to.

double harrys_account = 1000;

…

 else

 {

 balance = balance - amount;

 }

recall that

harrys_account

and balance

 are both names

for this memory

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

The function call has ended.

Local names in the function are gone and…

withdraw(harrys_account, 100);

!

harrys_balance was correctly changed!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

/**

 Withdraws the amount from the given balance, or withdraws
a penalty if the balance is insufficient.

 @param balance the balance from which to make the
withdrawal

 @param amount the amount to withdraw

*/

void withdraw(double& balance, double amount)

{

 const double PENALTY = 10;

 if (balance >= amount)

 {

 balance = balance - amount;

 }

 else

 {

 balance = balance - PENALTY;

 }

}

ch05/account.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

int main()

{

 double harrys_account = 1000;

 double sallys_account = 500;

 withdraw(harrys_account, 100);

 // Now harrys_account is 900

 withdraw(harrys_account, 1000); // Insufficient funds

 // Now harrys_account is 890

 withdraw(sallys_account, 150);

 cout << "Harry's account: " << harrys_account << endl;

 cout << "Sally's account: " << sallys_account << endl;

 return 0;

}

ch05/account.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

The type double& is pronounced:

 reference to double

 or

 double ref

(The type double is, of course, pronounced: double)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

A reference parameter must always be called with a

variable.

It would be an error to supply a number:

withdraw(1000, 500);

 // Error: reference parameter must be a variable

 The reason is clear—the function modifies the reference

parameter, but it is impossible to change the value of a

number.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Reference Parameters

For the same reason, you cannot supply an expression:

withdraw(harrys_account + 150, 500);

// Error: reference parameter must be a variable

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Prefer Return Values to Reference Parameters

 Some programmers use reference parameters as
a mechanism for setting the result of a function.

 For example:

void cube_volume(double side_length, double& volume)

{

 volume = side_length * side_length * side_length;

}

 However, this function is less convenient than our
previous cube_volume function.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Prefer Return Values to Reference Parameters

void cube_volume(double side_length, double& volume)

{

 volume = side_length * side_length * side_length;

}

 This function cannot be used in expressions such as:

 cout << cube_volume(2)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Prefer Return Values to Reference Parameters

 Another consideration is that the return

statement can return only one value.

 If caller wants more than two values, then the only

way to do this is with reference parameters (one

for each wanted value).

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constant References

 It is not very efficient to have a value parameter

that is a large object (such as a string value).

 Copying the object into a parameter variable is

less efficient than using a reference parameter.

 With a reference parameter, only the location

of the variable, not its value, needs to be

transmitted to the function.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constant References

 You can instruct the compiler to give you the

efficiency of a reference parameter and the

meaning of a value parameter, by using a

constant reference:

 void shout(const string& str)

 {

 cout << str << "!!!" << endl;

 }

 This is a bit more efficient than

 having str be a value parameter.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

CHAPTER SUMMARY

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

CHAPTER SUMMARY

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

CHAPTER SUMMARY

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

End Functions II

Slides by Evan Gallagher & Nikolay Kirov

