
C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Five: Functions I

Slides by Evan Gallagher & Nikolay Kirov

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

• To be able to implement functions

• To become familiar with the concept of parameter
passing

• To appreciate the importance of function comments

Chapter Goals

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Call a Function to Get Something Done

If it‟s chilly in here… do something about it!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

What Is a Function? Why Functions?

A function is a sequence of instructions with a name.

A function packages a computation into a form
that can be easily understood and reused.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Calling a Function

 A programmer calls a function

 to have its instructions executed.

the caller
(getting things done)

the function
(has the modify temperature instructions)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Calling a Function

int main()

{

 double z = pow(2, 3);

 ...

}

By using the expression: pow(2, 3)
main calls the pow function, asking it to compute 23.

The main function is temporarily suspended.

The instructions of the pow function execute and
compute the result.

The pow function returns its result back to main,
and the main function resumes execution.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Calling a Function

Execution flow

during a

function call

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Parameters

int main()

{

 double z = pow(2, 3);

 ...

}

When another function calls the pow function, it provides

“inputs”, such as the values 2 and 3 in the call pow(2, 3).

In order to avoid confusion with inputs that are provided by a
human user (cin >>), these values are called

parameter values.

The “output” that the pow function computes is called the

return value (not output using <<).

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

An Output Statement Does Not Return a Value

 output ≠ return

 If a function needs to display something for a

 user to see, it cannot use a return statement.

 An output statement using << communicates

only with the user running the program.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Return Statement Does Not Display (Good!)

 output ≠ return

 If a programmer needs the result of a calculation done by
a function, the function must have a return statement.

 An output statement using << does not

communicate with the calling programmer

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Return Statement Does Not Display (Good!)

int main()

{

 double z = pow(2, 3);

 // display result of calculation

 // stored in variable z

 cout << z << endl;

 // return from main – no output here!!!

 return 0;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Black Box Concept

Do you care what‟s inside a thermostat?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Black Box Concept

• You can think of it as a “black box”
where you can‟t see what‟s inside
but you know what it does.

• How did the pow
function do its job?

• You don‟t need to know.

• You only need to know its specification.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

Write the function that will do this:

 Compute the volume of a
 cube with a given side length

(any cube)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

When writing this function, you need to:

• Pick a good, descriptive name for the function

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

When writing this function, you need to:

• Pick a good, descriptive name for the function

 cube_volume

(What else would a function
named cube_volume do?)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

When writing this function, you need to:

• Pick a good, descriptive name for the function

• Give a type and a name for each parameter.

 cube_volume

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

When writing this function, you need to:

• Pick a good, descriptive name for the function

• Give a type and a name for each parameter.
There will be one parameter for each piece
of information the function needs to do its job.

 (And don‟t forget the parentheses)

 cube_volume(double side_length)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

When writing this function, you need to:

• Pick a good, descriptive name for the function

• Give a type and a name for each parameter.
There will be one parameter for each piece
of information the function needs to do its job.

• Specify the type of the return type

 cube_volume(double side_length)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

When writing this function, you need to:

• Pick a good, descriptive name for the function

• Give a type and a name for each parameter.
There will be one parameter for each piece
of information the function needs to do its job.

• Specify the type of the return type

double cube_volume(double side_length)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

When writing this function, you need to:

• Pick a good, descriptive name for the function

• Give a type and a name for each parameter.
There will be one parameter for each piece
of information the function needs to do its job.

• Specify the type of the return type

 Now write the body of the function:

 the code to do the cubing

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

 The code the function names must be in a block:

double cube_volume(double side_length)

{

 double volume = side_length * side_length * side_length;

 return volume;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

 The parameter allows the caller to give the function

information it needs to do it‟s calculating.

double cube_volume(double side_length)

{

 double volume = side_length * side_length * side_length;

 return volume;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

double cube_volume(double side_length)

{

 double volume = side_length * side_length * side_length;

 return volume;

}

Here’s the side

length you need

to calculate the

volume for me

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

 The code calculates the volume.

double cube_volume(double side_length)

{

 double volume = side_length * side_length * side_length;

 return volume;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

double cube_volume(double side_length)

{

 double volume = side_length * side_length * side_length;

 return volume;

}

I’ll do the

calculating right

now.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

 The return statement gives the function‟s result to the caller.

double cube_volume(double side_length)

{

 double volume = side_length * side_length * side_length;

 return volume;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

double cube_volume(double side_length)

{

 double volume = side_length * side_length * side_length;

 return volume;

}

Here it is.

I calculated it,

just for you.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

double cube_volume(double side_length)

{

 double volume = side_length * side_length * side_length;

 return volume;

}

Thank you.

It’s just what

I wanted

He’s so sweet,

how can I

possibly tell

him it’s not a

volume?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Test Your Function

You should always test the function.

You‟ll write a main function to do this.

A Complete Testing Program

#include <iostream>

using namespace std;

/**

 Computes the volume of a cube.

 @param side_length the side length of the cube

 @return the volume

*/

double cube_volume(double side_length)

{

 double volume = side_length * side_length * side_length;

 return volume;

}

ch05/cube.cpp

A Complete Testing Program

int main()

{

 double result1 = cube_volume(2);

 double result2 = cube_volume(10);

 cout << "A cube with side length 2 has volume "

 << result1 << endl;

 cout << "A cube with side length 10 has volume "

 << result2 << endl;

 return 0;

}

ch05/cube.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implementing Functions

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Commenting Functions

• Whenever you write a function,
you should comment its behavior.

• Comments are for human readers,
not compilers

• There is no universal standard for
the layout of a function comment.

– The layout used in the previous program is borrowed from
the Java programming language and is used in some C++
tools to produce documentation from comments.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Commenting Functions

Function comments do the following:

– explain the purpose of the function

– explain the meaning of the parameters

– state what value is returned

– state any special requirements

 Comments state the things a programmer who
 wants to use your function needs to know.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Calling Functions

Consider the order of activities when a function is called.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Parameter Passing

In the function call,

a value is supplied for each parameter,

called the parameter value.

(Other commonly used terms for this value

 are: actual parameter and argument.)

int hours = read_value_between(1, 12);

. . .

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Parameter Passing

When a function is called,

a parameter variable is created for each value passed in.

(Another commonly used term is formal parameter.)

(Parameters that take values are also known as value

parameters.)

 int hours = read_value_between(1, 12);

. . .

int read_value_between(int low, int high)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

int hours = read_value_between(1, 12);

. . .

int read_value_between(int low, int high)

Parameter Passing

12

Each parameter variable is initialized with the

corresponding parameter value from the call.

1

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

int hours = read_value_between(1, 12);

int read_value_between(int low, int high)

{

 int input;

 do

 {

 cout << "Enter a value between "

 << low << " and " << high << ": ";

 cin >> input;

 } while (input < low || input > high);

 return input;

}

Parameter Passing

12 1

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Parameter Passing

 Here is a call to the cube_volume function:

double result1 = cube_volume(2);

 Here is the function definition:

double cube_volume(double side_length)

{

 double volume = side_length * side_length * side_length;

 return volume;

}

 We‟ll keep up with their variables and parameters:

 result1
 side_length
 volume

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Parameter Passing

1. In the calling function, the local variable result1 already
exists. When the cube_volume function is called, the
parameter variable side_length is created.

double result1 = cube_volume(2);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Parameter Passing

2. The parameter variable is initialized with the value that was
passed in the call. In our case, side_length is set to 2.

double result1 = cube_volume(2);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Parameter Passing

3. The function computes the expression side_length *
side_length * side_length, which has the value 8.

That value is stored in the local variable volume.

[inside the function]

double volume = side_length * side_length * side_length;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Parameter Passing

4. The function returns. All of its variables are removed.

The return value is transferred to the caller, that is, the
function calling the cube_volume function.

double result1 = cube_volume(2);

The function executed: return volume;

which gives the caller the value 8

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Parameter Passing

4. The function returns. All of its variables are removed.

The return value is transferred to the caller, that is, the
function calling the cube_volume function.

double result1 = cube_volume(2);

the returned 8 is about to be stored

The function is over.
side_length and volume are gone.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Parameter Passing

The caller stores this value in their local variable result1.

double result1 = cube_volume(2);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Return Values

The return statement yields the function result.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Return Values

Also,

 The return statement

– terminates a function call

– immediately

// you are here

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 return

// now you are here

Return Values

Also,

 The return statement

– terminates a function call

– immediately

// you are here

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Return Values

This behavior can be used to handle unusual cases.

What should we do if the side length is negative?

We choose to return a zero and not do any calculation:

double cube_volume(double side_length)

{

 if (side_length < 0) return 0;

 double volume = side_length * side_length * side_length;

 return volume;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Return Values

 The return statement can return the value of any expression.

 Instead of saving the return value in a variable and returning
the variable, it is often possible to eliminate the variable and
return a more complex expression:

double cube_volume(double side_length)

{

 return side_length * side_length * side_length;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Missing Return Value

 Your function always needs to return something.

 Consider putting in a guard against negatives
and also trying to eliminate the local variable:

double cube_volume(double side_length)

{

 if (side_length >= 0)

 {

 return side_length * side_length *
 side_length; }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Missing Return Value

 Consider what is returned if the caller does pass
in a negative value!

double cube_volume(double side_length)

{

 if (side_length >= 0)

 {

 return side_length * side_length *
 side_length; }

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Missing Return Value

 Every possible execution path
should return a meaningful value:

double cube_volume(double side_length)

{

 if (side_length >= 0)

 {

 return side_length * side_length *
 side_length; }

}

?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Missing Return Value

 Depending on circumstances, the compiler might flag this
as an error, or the function might return a random value.

 This is always bad news, and you must protect against
this problem by returning some safe value.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Functions Without Return Values

 Consider the task of writing a string
with the following format around it.

Any string could be used.

 For example, the string "Hello" would produce:

 !Hello!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Functions Without Return Values – The void Type

 A function for this task can be defined as follows:

 void box_string(string str)

 Notice the return type of this function: void

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Functions Without Return Values – The void Type

 This kind of function is called a void function.

 void box_string(string str)

 Use a return type of void to indicate that a function
does not return a value.

 void functions are used to

 simply do a sequence of instructions

 – They do not return a value to the caller.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Functions Without Return Values – The void Type

 void functions are used only to
do a sequence of instructions.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Functions Without Return Values – The void Type

• Print a line that contains the „-‟ character n + 2 times, where n
is the length of the string.

• Print a line containing the string, surrounded with a ! to the left and
right.

• Print another line containing the - character n + 2 times.

What is the

 algorithm?

!Hello!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Functions Without Return Values – The void Type

void box_string(string str)

{

 int n = str.length();

 for (int i = 0; i < n + 2; i++){ cout << "-"; }

 cout << endl;

 cout << "!" << str << "!" << endl;

 for (int i = 0; i < n + 2; i++) { cout << "-"; }

 cout << endl;

}

 Note that this function doesn‟t compute any value.

It performs some actions and then returns to the caller
 – without returning a value.
 (The return occurs at the end of the block.)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Functions Without Return Values – The void Type

 Because there is no return value, you
cannot use box_string in an expression.

 You can make this call kind of call:

 box_string("Hello");

 but not this kind:

 result = box_string("Hello");

 // Error: box_string doesn’t

 // return a result.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Functions Without Return Values – The void Type

 If you want to return from a void function before
reaching the end, you use a return statement
without a value. For example:

void box_string(string str)

{

 int n = str.length();

 int n = str.length();

 if (n == 0)
 {

 return;
 }

 . . . // None of these statements
 // will be executed

// Return immediately

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

 When you write nearly identical code multiple times,

you should probably introduce a function.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

Consider how similar the following statements are:

int hours;

do

{

 cout << "Enter a value between 0 and 23:";

 cin >> hours;

} while (hours < 0 || hours > 23);

int minutes;

do

{

 cout << "Enter a value between 0 and 59: ";

 cin >> minutes;

} while (minutes < 0 || minutes > 59);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

The values for the high end of the range are different.

int hours;

do

{

 cout << "Enter a value between 0 and 23:";

 cin >> hours;

} while (hours < 0 || hours > 23);

int minutes;

do

{

 cout << "Enter a value between 0 and 59: ";

 cin >> minutes;

} while (minutes < 0 || minutes > 59);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

The names of the variables are different.

int hours;

do

{

 cout << "Enter a value between 0 and 23:";

 cin >> hours;

} while (hours < 0 || hours > 23);

int minutes;

do

{

 cout << "Enter a value between 0 and 59: ";

 cin >> minutes;

} while (minutes < 0 || minutes > 59);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

But there is common behavior.

int hours;

do

{

 cout << "Enter a value between _ and __:";

 cin >> hours;

} while (hours < _ || hours > __);

int minutes;

do

{

 cout << "Enter a value between _ and __: ";

 cin >> minutes;

} while (minutes < _ || minutes > __);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

Move the common behavior into one function.

int read_int_up_to(int high)

{

 int input;

 do

 {

 cout << "Enter a value between "

 << "0 and " << high << ": ";

 cin >> input;

 } while (input < 0 || input > high);

 return input;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Here we read one value, making sure it‟s within the range.

int read_int_up_to(int high)

{

 int input;

 do

 {

 cout << "Enter a value between "

 << "0 and " << high << ": ";

 cin >> input;

 } while (input < 0 || input > high);

 return input;

}

Designing Functions – Turn Repeated Code into Functions

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

Then we can use this function as many times as we need:

int hours = read_int_up_to(23);

int minutes = read_int_up_to(59);

Note how the code has become much easier to understand.

And we are not rewriting code

 – code reuse!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

Perhaps we can make this function even better:

int months = read_int_up_to(12);

Can we use this function to get a valid month?

Months are numbered starting at 1, not 0.

We can modify the code to take two parameters:
the end points of the valid range.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

Again, consider how similar the following statements are:

int month;

do

{

 cout << "Enter a value between 1 and 12:";

 cin >> month;

} while (month < 1 || month > 12);

int minutes;

do

{

 cout << "Enter a value between 0 and 59: ";

 cin >> minutes;

} while (minutes < 0 || minutes > 59);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

As before, the values for the range are different.

int month;

do

{

 cout << "Enter a value between 1 and 12:";

 cin >> month;

} while (month < 1 || month > 12);

int minutes;

do

{

 cout << "Enter a value between 0 and 59: ";

 cin >> minutes;

} while (minutes < 0 || minutes > 59);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

But the names of the variables are different.

int month;

do

{

 cout << "Enter a value between 1 and 12:";

 cin >> month;

} while (month < 1 || month > 12);

int minutes;

do

{

 cout << "Enter a value between 0 and 59: ";

 cin >> minutes;

} while (minutes < 0 || minutes > 59);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

Notice the common behavior?

int month;

do

{

 cout << "Enter a value between _ and __:";

 cin >> month;

} while (month < _ || month > __);

int minutes;

do

{

 cout << "Enter a value between _ and __: ";

 cin >> minutes;

} while (minutes < _ || minutes > __);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

Again, move the common behavior into one function.

int read_value_between(int low, int high)

{

 int input;

 do

 {

 cout << "Enter a value between "

 << low << " and " << high << ": ";

 cin >> input;

 } while (input < low || input > high);

 return input;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

A different name would need to be used, of course

because it does a different activity.

int read_value_between(int low, int high)

{

 int input;

 do

 {

 cout << "Enter a value between "

 << low << " and " << high << ": ";

 cin >> input;

 } while (input < low || input > high);

 return input;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Designing Functions – Turn Repeated Code into Functions

We can use this function as many times as we need,

passing in the end points of the valid range:

int hours = read_value_between(1, 12);

int minutes = read_value_between(0, 59);

Note how the code has become even better.

And we are still not rewriting code

 – code reuse!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

End Functions I

Slides by Evan Gallagher & Nikolay Kirov

