
C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Four: Loops II

Slides by Evan Gallagher & Nikolay Kirov

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

• To understand nested loops

• To implement programs that read and process data sets

• To use a computer for simulations

Chapter Goals

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Processing Input – When and/or How to Stop?

or be stopped!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Processing Input – When and/or How to Stop?

• We need to know, when getting input

from a user, when they are done.

• One method is to hire a sentinel (as shown)

or more correctly choose a value whose meaning is STOP!

• In the military, a sentinel guards a border or passage. In

computer science, a sentinel value denotes the end of an

input sequence or the border between input sequences.

• As long as there is a known range of valid data points, we

can use a value not in it.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Processing Input – When and/or How to Stop?

• We will write code to calculate the average of
some salary values input by the user.

How many will there be?

That is the problem. We can‟t know.

 But we can use a sentinel value, as long as we
tell the user to use it, to tell us when they are
done.

• Since salaries are never negative, we can safely
choose -1 as our sentinel value.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Processing Input – When and/or How to Stop?

• In order to have a value to test, we will need to

get the first input before the loop. The loop

statements will process each non-sentinel value,

and then get the next input.

• Suppose the user entered the sentinel value as

the first input. Because averages involve division

by the count of the inputs, we need to protect
against dividing by zero. Using an if-else

statement from Chapter 3 will do.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

#include <iostream>

using namespace std;

int main()

{

 double sum = 0;

 int count = 0;

 double salary = 0;

 // get all the inputs

 cout << "Enter salaries, -1 to finish: ";

 while (salary != -1)

 {

 cin >> salary;

 if (salary != –1)

 {

 sum = sum + salary;

 count++;

 }

 }

ch04/sentinel.cpp

The Complete Salary Average Program

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 // process and display the average

 if (count > 0)

 {

 double average = sum / count;

 cout << "Average salary: " << average << endl;

 }

 else

 {

 cout << "No data" << endl;

 }

 return 0;

}

A program run:

Enter salaries, -1 to finish: 10 10 40 -1

Average salary: 20

The Complete Salary Average Program

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

• Sometimes it is easier and a bit more intuitive to ask the

user to “Hit Q to Quit” instead or requiring the input of a

sentinel value.

• Sometimes picking a sentinel value is simply impossible

– if any valid number is allowed, which number could be

chosen?

Using Failed Input for Processing

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

• In the previous chapter, we used cin.fail()
to test if the most recent input failed.

• Note that if you intend to take more input from the
keyboard after using failed input to end a loop,

you must reset the keyboard with cin.clear().

Using Failed Input for Processing

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

If we introduce a bool variable to be used to test for a

failed input, we can use cin.fail() to test for the input

of a „Q‟ when we were expecting a number:

Using Failed Input for Processing

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

cout << "Enter values, Q to quit: ";

bool more = true;

while (more)

{

 cin >> value;

 if (cin.fail())

 {

 more = false;

 }

 else

 {

 // process value here

 }

}

cin.clear() // reset if more input is to be taken

Using Failed Input for Processing

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using Failed Input for Processing

• Using a bool variable in this way is disliked by

many programmers.

 Why?

• cin.fail is set when >> fails

It is not really a top or bottom test.

If only we could use the input itself to control

the loop – we can!

• An input that does not succeed is considered to
be false so it can be used in the while‟s test.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using the input attempt directly we have:

cout << "Enter values, Q to quit: ";

while (cin >> value)

{

 // process value here

}

cin.clear();

Using Failed Input for Processing

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Those same programmers who dislike loops that are
controlled by a bool variable have another reason:

the actual test for loop termination is in the middle of

the loop. Again it is not really a top or bottom test.

This is called a loop-and-a-half.

The Loop and a Half Problem and the break Statement

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

If we test for a failed read, we can stop the loop

at that point:

while (true)

{

 cin >> value;

 if (cin.fail()) { break; }

 // process value here

}

cin.clear() // reset if more input is to be taken

The break statement breaks out of the enclosing

loop, independent of the loop condition.

The Loop and a Half Problem and the break Statement

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Loops

For each hour, 60 minutes are processed – a nested loop.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Loops

• Nested loops are used mostly for data in tables as

rows and columns.

• The processing across the columns is a loop, as

you have seen before, “nested” inside a loop for

going down the rows.

• Each row is processed similarly so design begins

at that level. After writing a loop to process a

generalized row, that loop, called the “inner loop,”

is placed inside an “outer loop.”

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Loops

Write a program to produce a table of powers.

 The output should be something like this:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Loops

• The first step is to solve the “nested” loop.

• There are four columns and in each column we display

the power. Using x to be the number of the row we are

processing, we have (in pseudo-code):

• You would test that this works in your code before

continuing. If you can‟t correctly print one row, why try

printing lots of them?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Loops

 Now, putting the inner loop

into the whole process we
have:

(don‟t forget to indent, nestedly)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Loops

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

int main()

{

 const int NMAX = 4;

 const double XMAX = 10;

 // Print table header

 for (int n = 1; n <= NMAX; n++)

 {

 cout << setw(10) << n;

 }

 cout << endl;

 for (int n = 1; n <= NMAX; n++)

 {

 cout << setw(10) << "x ";

 }

 cout << endl << endl;

ch04/powtable.cpp

The Complete Program for Table of Powers

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 // Print table body

 for (double x = 1; x <= XMAX; x++)

 {

 // Print table row

 for (int n = 1; n <= NMAX; n++)

 {

 cout << setw(10) << pow(x, n);

 }

 cout << endl;

 }

 return 0;

}

 The program run would be:

The Complete Program for Table of Powers

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

More Nested Loop Examples

The loop variables can have a value relationship.

In this example the inner loop depends on the value

of the outer loop.

for (i = 1; i <= 4; i++)

 for (j = 1; j <= i; j++)

 cout << "*";

cout << endl;

The output will be:

*

**

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

More Nested Loop Examples

for (i = 1; i <= 4; i++)

 for (j = 1; j <= i; j++)

 cout << "*";

cout << endl;

 i represents the

row number or

the line number

j is each line‟s length,

which is different for each line. and
depends on the current line number, i

*

* *

* * *

* * * *

More Nested Loop Examples

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

j is each line‟s length,

which is different for each line. and
depends on the current line number, i

for (i = 1; i <= 4; i++)

 for (j = 1; j <= i; j++)

 cout << "*";

cout << endl;

 j stops at: i

 1

 when i is: i 1

 i represents the

row number or

the line number

More Nested Loop Examples

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

for (i = 1; i <= 4; i++)

 for (j = 1; j <= i; j++)

 cout << "*";

cout << endl;

 j stops at: i

 1

 when i is: i 1

 i represents the

row number or

the line number

j is each line‟s length,

which is different for each line. and
depends on the current line number, i

*

More Nested Loop Examples

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

for (i = 1; i <= 4; i++)

 for (j = 1; j <= i; j++)

 cout << "*";

cout << endl;

 j stops at: i

 1

 when i is: i 1

 i 2 * *

i represents the

row number or

the line number

j is each line‟s length,

which is different for each line. and
depends on the current line number, i

*

More Nested Loop Examples

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

for (i = 1; i <= 4; i++)

 for (j = 1; j <= i; j++)

 cout << "*";

cout << endl;

 j stops at: i i i

 1 2 3

 when i is: i 1

 i 2

 i 3

i represents the

row number or

the line number

j is each line‟s length,

which is different for each line. and
depends on the current line number, i

*

* *

* * *

More Nested Loop Examples

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

for (i = 1; i <= 4; i++)

 for (j = 1; j <= i; j++)

 cout << "*";

cout << endl;

 j stops at: i i i i

 1 2 3 4

 when i is: i 1

 i 2

 i 3

 i 4

i represents the

row number or

the line number

j is each line‟s length,

which is different for each line. and
depends on the current line number, i

*

* *

* * *

* * * *

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

In this example, the loop variables are still related, but the

processing is a bit more complicated.

for (i = 1; i <= 3; i++)

{

 for (j = 1; j <= 5; j++)

 {

 if (i + j % 2 == 0) { cout << "*"; }

 else { cout << " "; }

 }

 cout << endl;

}

More Nested Loop Examples

The output will be:

* * *

 * *

* * *

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Random Numbers and Simulations

A die toss

another die toss

and another die toss

several tosses of dice

one more die is tossed

was that an English lesson?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Simulations

A simulation program uses the computer to simulate

an activity in the real world (or in an imaginary one).

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Simulations

• Simulations are commonly used for

– Predicting climate change

– Analyzing traffic

– Picking stocks

– Many other applications in science and business

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Randomness for Reality (Simulating)

• Programmers must model the “real world” at times.

• Consider the problem of modeling customers arriving

at a store.

 Do we know the rate?

 Does anyone?

 How about the shopkeeper!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Randomness for Reality (Simulating)

Ask the shopkeeper:

 It’s about every five minutes

…or so…

…give or a take a couple…

…or three…

…but on certain Tuesdays…

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Randomness for Reality (Simulating)

To accurately model customer traffic, you want to

take that random fluctuation into account.

 How?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The rand Function

 The C++ library has a random number generator:

rand()

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The rand Function

 rand is defined in the cstdlib header

 Calling rand yields a random integer

between 0 and RAND_MAX

(The value of RAND_MAX is implementation dependent)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The rand Function

 Calling rand again yields a different random integer

 Very, very, very rarely it might be the same random

integer again.

 (That‟s OK. In the real world this happens.)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The rand Function

 rand picks from a very long sequence of numbers

that don‟t repeat for a long time.

 But they do eventually repeat.

 These sorts of “random” numbers are often called

 pseudorandom numbers.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The rand Function

 rand uses only one pseudorandom number sequence

 and it always starts from the same place.

 Oh dear

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The rand Function

 When you run your program again on another day,
the call to rand will start with:

the same random number!

 Is it very “real world” to use the same sequence
over and over?

 No, but it‟s really nice for testing purposes.

 but…

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Seeding the rand Function

 You can “seed” the random generator to indicate

where it should start in the pseudorandom sequence

 Calling srand sets where rand starts

 srand is defined in the cstdlib header

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Seeding the rand Function

 But what value would be different every time

you run your program?

 How about the time?

(hint)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Seeding the rand Function

 You can obtain the system time.

 Calling time(0) gets the current time

 Note the zero. It is required.

 time is defined in the time header

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Seeding the rand Function

 Calling srand sets where rand starts.

 Calling time(0) gets the current time.

 So, to set up for “really, really random”

 random numbers on each program run:

 srand(time(0)); // seed rand()

(Well, as “really random” as we can hope for.)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Modeling Using the rand Function

 Let‟s model a pair of dice,

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Modeling Using the rand Function

 one die at a time.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Modeling Using the rand Function

 What are the numbers on one die?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Modeling Using the rand Function

 What are the bounds of the range of numbers on one die?

 1 and 6 (inclusive)

 We want a value randomly between those endpoints
(inclusively)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

a b

Modeling Using the rand Function

Given two endpoints,

a and b, recall there are

 (b - a + 1)

values between a and b,

(including the bounds themselves).

(b - a + 1)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

a b

Modeling Using the rand Function

(b - a + 1)

Obtain a random value
between 0 and b – a

by using the rand() function

rand() % (b - a + 1)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

a b

Modeling Using the rand Function

(b - a + 1)

Start at a

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

a b

Modeling Using the rand Function

(b - a + 1)

Add that random value
to a and you have:

int d = rand() % (b - a + 1) + a;

rand() % (b - a + 1)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

a b

Modeling Using the rand Function

(b - a + 1)

int d = rand() % (b - a + 1) + a;

a random value in the range.

rand() % (b - a + 1)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Using 1 and 6 as the bounds
and
modeling for two dice,

 running for 10 tries,
 we have:

Modeling Using the rand Function

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Modeling Using the rand Function

#include <iostream>

#include <string>

#include <cstdlib>

#include <ctime>

using namespace std;

int main()

{

 srand(time(0));

 for (i = 1; i <= 10; i++)

 {

 int d1 = rand() % 6 + 1;

 int d2 = rand() % 6 + 1;

 cout << d1 << " " << d2 << endl;

 }

 cout << endl;

 return 0;

}

5 1

2 1

1 2

5 1

1 2

6 4

4 4

6 1

6 3

5 2

ch04/dice.cpp

One of many different

Program Runs:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

The premier gaming “table d’darts”

at one of the less well known casinos in Monte Carlo,

somewhat close but not quite next door to Le Grand Casino.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

As long as we‟re here, let‟s go in!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

 The Monte Carlo method is a method for finding

approximate solutions to problems that cannot be

precisely solved.

 Here is an example: compute

 This is difficult.



C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

 While we are in this fine casino,

we should at least play one game at the “table d’darts”



C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

THAT‟S IT!

 By shooting darts (and a little math)

we can obtain an approximation for . 

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

Consider placing the round dartboard
inside an exactly fitting square

?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

As we toss darts at the target,
if we are able to just hit the target – at all – it‟s a hit.

The Monte Carlo Method

?

(no wonder this is such a pathetic casino)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

and a miss is a miss.

?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

 The (x,y) coordinate of a hit is when (x2 + y2) ≤ 1.

 In code:

 if (x * x + y * y <= 1) { hits++; }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

Our coded random shots will give a ratio of

hits/tries

that is approximately equal to the ratio of

the areas of the circle and the square:

/4



C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

Multiply by 4 and we have an estimate for !

 = 4 * hits/tries;

The longer we run our program,

the more random numbers we generate,
 the better the estimate.





C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

For the x and y coordinates within the circle,

we need random x and y values between -1 and 1.

That‟s a range of (-1 + 1 + 1) or 2.

As before, we want to add some random portion
of this range to the low endpoint, -1.

 But we will want a floating point value, not an integer.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

 We must use rand with double values

to obtain that random portion.

double r = rand() * 1.0 / RAND_MAX;

The value r is a random floating-point
value between 0 and 1.

You can think of this as a percentage if you like.

(Use 1.0 to make the / operator not do integer division)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

The computation:

double x = -1 + 2 * r;

2 is the length of the range from -1 to 1

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

The computation:

double x = -1 + 2 * r;

2 is the length of the range from -1 to 1

r is some random value between 0.0 and 1.0

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

The computation:

double x = -1 + 2 * r;

2 is the length of the range from -1 to 1

r is some random value between 0.0 and 1.0

so (2 * r) is some portion of that range

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

The computation:

double x = -1 + 2 * r;

2 is the length of the range from -1 to 1

r is some random value between 0.0 and 1.0

so (2 * r) is some portion of that range

We will add this portion to the left hand end of the range, -1

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method

The computation:

double x = -1 + 2 * r;

2 is the length of the range from -1 to 1

r is some random value between 0.0 and 1.0

so (2 * r) is some portion of that range

Adding this portion to the left hand end of the range gives us:

x randomly within the range -1 and 1.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Monte Carlo Method for Approximating PI

#include <iostream>

#include <cstdlib>

#include <cmath>

#include <ctime>

using namespace std;

int main()

{

 const int TRIES = 10000;

 srand(time(0));

 int hits = 0;

 for (int i = 1; i <= TRIES; i++)

 {

 double r = rand() * 1.0 / RAND_MAX; // Between 0 and 1

 double x = -1 + 2 * r; // Between –1 and 1

 r = rand() * 1.0 / RAND_MAX;

 double y = -1 + 2 * r;

 if (x * x + y * y <= 1) { hits++; }

 }

 double pi_estimate = 4.0 * hits / TRIES;

 cout << "Estimate for pi: “ << pi_estimate << endl;

 return 0;

}

ch04/montecarlo.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Summary

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Summary

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Summary

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

End Loops II

Slides by Evan Gallagher & Nikolay Kirov

