
C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Three: Decisions II

Slides by Evan Gallagher & Nikolay Kirov

Lecture Goals

• To understand multiple alternatives and nested branches

• To understand the Boolean data type

• To develop strategies for validating user input

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives

if it‟s quicker to the candy mountain,

else

 we go that way

 we‟ll go that way

 but what about that way?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives

Multiple if statements can be combined

to evaluate complex decisions.

For example, consider a program that displays the effect

of an earthquake, as measured by the Richter scale

How would we write code to deal with Richter scale

values?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives

 In this case, there are five branches:

 one each for the four descriptions of damage,

 and one for no destruction.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives

You use multiple if statements

to implement multiple alternatives.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Richter flowchart

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

If a test is false,

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives

if ()

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

If a test is false, false

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

If a test is false,

that block is skipped

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

If a test is false,

that block is skipped and

the next test is made.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

As soon as one of the

four tests succeeds,

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if ()

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

As soon as one of the

four tests succeeds,

true

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

As soon as one of the

four tests succeeds,

that block is executed,

displaying the result,

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

As soon as one of the

four tests succeeds,

that block is executed,

displaying the result,

and no further tests

are attempted.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives – Wrong Order of Tests

 Because of this execution order,

when using multiple if statements,

pay attention to the order of the conditions.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives – Wrong Order of Tests

if (richter >= 4.5) // Tests in wrong order

{

 cout << "Damage to poorly constructed buildings";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 8.0)

{

 cout << "Most structures fall";

}

. . .

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives – Wrong Order of Tests

if (richter >= 4.5) // Tests in wrong order

{

 cout << "Damage to poorly constructed buildings";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 8.0)

{

 cout << "Most structures fall";

}

. . .

Suppose the value
of richter is 7.1,

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives – Wrong Order of Tests

if (richter >= 4.5) // Tests in wrong order

{

 cout << "Damage to poorly constructed buildings";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 8.0)

{

 cout << "Most structures fall";

}

. . .

Suppose the value
of richter is 7.1,

this test is true!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives – Wrong Order of Tests

if () // Tests in wrong order

{

 cout << "Damage to poorly constructed buildings";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 8.0)

{

 cout << "Most structures fall";

}

. . .

Suppose the value
of richter is 7.1,

this test is true!

true

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives – Wrong Order of Tests

if (richter >= 4.5) // Tests in wrong order

{

 cout << "Damage to poorly constructed buildings";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 8.0)

{

 cout << "Most structures fall";

}

. . .

Suppose the value
of richter is 7.1,

this test is true!

and that block is

executed (Oh no!),

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Multiple Alternatives – Wrong Order of Tests

if (richter >= 4.5) // Tests in wrong order

{

 cout << "Damage to poorly constructed buildings";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 8.0)

{

 cout << "Most structures fall";

}

. . .

Suppose the value
of richter is 7.1,

this test is true!

and that block is

executed (Oh no!),

and we go…

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

In the United States, different tax rates are used depending on the

taxpayer‟s marital status

Nested Branches – Taxes

Taxes…
C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

Taxes…

What next after line 37?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

Taxes…

What next after line 37?

… if the taxable amount from

line 22 is bigger than line 83 …

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

Taxes…

What next after line 37?

…if the taxable amount from

line 22 is bigger than line 83…

… and I have 3 children

under 13 …

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

Taxes…

What next after line 37?

…if the taxable amount from

line 22 is bigger than line 83…

…and I have 3 children

under 13…

… unless I‟m also married …

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

Taxes…

What next after line 37?

…if the taxable amount from

line 22 is bigger than line 83…

…and I have 3 children

under 13…

…unless I‟m also married…

AM I STILL MARRIED?!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

• In the United States different tax rates are used

depending on the taxpayer‟s marital status.

• There are different tax schedules for single and

for married taxpayers.

• Married taxpayers add their income together and

pay taxes on the total.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

 Let‟s write the code.

 First, as always, we analyze the problem.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

 Nested branching analysis is aided by drawing

tables showing the different criteria.

 Thankfully, the I.R.S. has done this for us.

The Internal Revenue Service (I.R.S.) is the U.S.

government agency responsible for tax collection

and tax law enforcement.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

Tax brackets for single filers:

 from $0 to $32,000

 above $32,000

then tax depends on income

Tax brackets for married filers:

 from $0 to $64,000

 above $64,000

then tax depends on income

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

Now that you understand,

given a filing status and an income figure,

compute the taxes due.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

ARGHHHH!!!!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

• The key point is that there are two levels of

decision making.

 Really, only two (at this level).

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

First, you must branch on the marital status.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

Then, for each filing status,

you must have another branch on income level.

The single filers …

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

 …have their own nested if statement

with the single filer figures.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

For those with spouses (spice?) …

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

 …a different nested if for using their figures.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

In theory you can have even deeper levels of nesting.

Consider:

first by state

 then by filing status

 then by income level

This situation requires three levels of nesting.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

#include <iostream>

#include <string>

using namespace std;

int main()

{

 const double RATE1 = 0.10;

 const double RATE2 = 0.25;

 const double RATE1_SINGLE_LIMIT = 32000;

 const double RATE1_MARRIED_LIMIT = 64000;

 double tax1 = 0;

 double tax2 = 0;

 double income;

 cout << "Please enter your income: ";

 cin >> income;

 cout << "Please enter s for single, m for married: ";

 string marital_status;

 cin >> marital_status;

ch03/tax.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

if (marital_status == "s")

 {

 if (income <= RATE1_SINGLE_LIMIT)

 {

 tax1 = RATE1 * income;

 }

 else

 {

 tax1 = RATE1 * RATE1_SINGLE_LIMIT;

 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);

 }

 }

else

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

 {

 if (income <= RATE1_MARRIED_LIMIT)

 {

 tax1 = RATE1 * income;

 }

 else

 {

 tax1 = RATE1 * RATE1_MARRIED_LIMIT;

 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);

 }

 }

 double total_tax = tax1 + tax2;

 cout << "The tax is $" << total_tax << endl;

 return 0;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches – Taxes

In practice two levels of nesting should be enough.

Beyond that you should be calling your own functions.

 – But, you don‟t know to write functions…

 …yet

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

 A very useful technique for understanding whether a

program works correctly is called hand-tracing.

 You simulate the program‟s activity on a sheet of paper.

 You can use this method with pseudocode or C++ code.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

• Depending on where you normally work, get:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

• Depending on where you normally work, get:

– an index card

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

• Depending on where you normally work, get:

– an index card

– an envelope

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

• Depending on where you normally work, get:

– an index card

– an envelope (use the back)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

• Depending on where you normally work, get:

– an index card

– an envelope (use the back)

– a cocktail napkin

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

• Depending on where you normally work, get:

– an index card

– an envelope (use the back)

– a cocktail napkin

 (!)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

Looking at your pseudocode or C++ code,

– Use a marker, such as a paper clip,

(or toothpick from an olive)

to mark the current statement.

– “Execute” the statements one at a time.

– Every time the value of a variable changes,

cross out the old value, and

write the new value below the old one.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

Let‟s do this with the tax program.

(take those cocktail napkins out of your pockets and get started!)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

int main()

{

 const double RATE1 = 0.10;

 const double RATE2 = 0.25;

 const double RATE1_SINGLE_LIMIT = 32000;

 const double RATE1_MARRIED_LIMIT = 64000;

 Constants aren‟t “changes” during execution.

 They were created and initialized earlier

so we don‟t write them in our trace.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

int main()

{

 const double RATE1 = 0.10;

 const double RATE2 = 0.25;

 const double RATE1_SINGLE_LIMIT = 32000;

 const double RATE1_MARRIED_LIMIT = 64000;

 double tax1 = 0;

 double tax2 = 0;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

int main()

{

 const double RATE1 = 0.10;

 const double RATE2 = 0.25;

 const double RATE1_SINGLE_LIMIT = 32000;

 const double RATE1_MARRIED_LIMIT = 64000;

 double tax1 = 0;

 double tax2 = 0;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

 double income;

 cout << "Please enter your income: ";

 cin >> income;

 The user typed 80000.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

 double income;

 cout << "Please enter your income: ";

 cin >> income;

 cout << "Please enter s for single, m for married: ";

 string marital_status;

 cin >> marital_status;

 The user typed m

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

 if (marital_status == "s")

 {

 if (income <= RATE1_SINGLE_LIMIT)

 {

 tax1 = RATE1 * income;

 }

 else

 {

 tax1 = RATE1 * RATE1_SINGLE_LIMIT;

 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);

 }

 }

 else

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

 if ()

 {

 if (income <= RATE1_SINGLE_LIMIT)

 {

 tax1 = RATE1 * income;

 }

 else

 {

 tax1 = RATE1 * RATE1_SINGLE_LIMIT;

 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);

 }

 }

 else

false

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

 if (marital_status == "s")

 {

 if (income <= RATE1_SINGLE_LIMIT)

 {

 tax1 = RATE1 * income;

 }

 else

 {

 tax1 = RATE1 * RATE1_SINGLE_LIMIT;

 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);

 }

 }

 else

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

 else

 {

 if (income <= RATE1_MARRIED_LIMIT)

 {

 tax1 = RATE1 * income;

 }

 else

 {

 tax1 = RATE1 * RATE1_MARRIED_LIMIT;

 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);

 }

 }

 double total_tax = tax1 + tax2;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

 else

 {

 if (income <=)

 {

 tax1 = RATE1 * income;

 }

 else

 {

 tax1 = RATE1 * RATE1_MARRIED_LIMIT;

 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);

 }

 }

 double total_tax = tax1 + tax2;

64000

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

 else

 {

 if ()

 {

 tax1 = RATE1 * income;

 }

 else

 {

 tax1 = RATE1 * RATE1_MARRIED_LIMIT;

 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);

 }

 }

 double total_tax = tax1 + tax2;

false

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

 else

 {

 if (income <= RATE1_MARRIED_LIMIT)

 {

 tax1 = RATE1 * income;

 }

 else

 {

 tax1 = RATE1 * RATE1_MARRIED_LIMIT;

 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);

 }

 }

 double total_tax = tax1 + tax2;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

 else

 {

 if (income <= RATE1_MARRIED_LIMIT)

 {

 tax1 = RATE1 * income;

 }

 else

 {

 tax1 = RATE1 * RATE1_MARRIED_LIMIT;

 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);

 }

 }

 double total_tax = tax1 + tax2;

 C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

 else

 {

 if (income <= RATE1_MARRIED_LIMIT)

 {

 tax1 = RATE1 * income;

 }

 else

 {

 tax1 = RATE1 * RATE1_MARRIED_LIMIT;

 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);

 }

 }

 double total_tax = tax1 + tax2;

 C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

 else

 {

 if (income <= RATE1_MARRIED_LIMIT)

 {

 tax1 = RATE1 * income;

 }

 else

 {

 tax1 = RATE1 * RATE1_MARRIED_LIMIT;

 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);

 }

 }

 double total_tax = tax1 + tax2;

 C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Hand-Tracing

 else

 {

 if (income <= RATE1_MARRIED_LIMIT)

 {

 tax1 = RATE1 * income;

 }

 else

 {

 tax1 = RATE1 * RATE1_MARRIED_LIMIT;

 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);

 }

 }

 double total_tax = tax1 + tax2;

 C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 double total_tax = tax1 + tax2;

 cout << "The tax is $" << total_tax << endl;

 return 0;

}

Hand-Tracing

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Consider how to test the tax computation program.

 Of course, you cannot try out all possible inputs of

filing status and income level.

 Even if you could, there would be no point in trying them all.

Prepare Test Cases Ahead of Time

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 If the program correctly computes one or two tax amounts

in a given bracket, then we have a good reason to believe

that all amounts will be correct.

 You should also test on the boundary conditions, at the

endpoints of each bracket

 this tests the < vs. <= situations.

Prepare Test Cases Ahead of Time

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 There are two possibilities for the filing status and two

tax brackets for each status, yielding four test cases.

• Test a handful of boundary conditions, such as an income

that is at the boundary between two brackets, and a zero

income.

• If you are responsible for error checking, also test an

invalid input, such as a negative income.

Prepare Test Cases Ahead of Time

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Here are some possible test cases for the tax program:

Test Case Expected Output Comment

30,000 s 3,000 10% bracket

72,000 s 13,200 3,200 + 25% of 40,000

50,000 m 5,000 10% bracket

10,400 m 16,400 6,400 + 25% of 40,000

32,000 m 3,200 boundary case

 0 0 boundary case

Prepare Test Cases Ahead of Time

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 It is always a good idea to design test

cases before starting to code.

 Working through the test cases gives you a

better understanding of the algorithm that

you are about to implement.

Prepare Test Cases Ahead of Time

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 When an if statement is nested inside another

if statement, the following error may occur.

Can you find the problem with the following?

double shipping_charge = 5.00;

 // $5 inside continental U.S.

if (country == "USA")

 if (state == "HI")

 shipping_charge = 10.00;

 // Hawaii is more expensive

else

 shipping_charge = 20.00;

 // As are foreign shipments

The Dangling else Problem

 // Pitfall!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 The indentation level seems to suggest that the else

 is grouped with the test country == "USA".

Unfortunately, that is not the case.

The compiler ignores all indentation and matches
 the else with the preceding if.

double shipping_charge = 5.00;

 // $5 inside continental U.S.

if (country == "USA")

 if (state == "HI")

 shipping_charge = 10.00;

 // Hawaii is more expensive

else

 shipping_charge = 20.00;

 // As are foreign shipments

The Dangling else Problem

 // Pitfall!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 This is what the code actually is.

 And this is not what you want.

double shipping_charge = 5.00;

 // $5 inside continental U.S.

if (country == "USA")

 if (state == "HI")

 shipping_charge = 10.00;

 // Hawaii is more expensive

 else

 shipping_charge = 20.00;

 // As are foreign shipments

The Dangling else Problem

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 This is what the code actually is.

 And this is not what you want.

And it has a name: “the dangling else problem”

double shipping_charge = 5.00;

 // $5 inside continental U.S.

if (country == "USA")

 if (state == "HI")

 shipping_charge = 10.00;

 // Hawaii is more expensive

 else

 shipping_charge = 20.00;

 // As are foreign shipments

The Dangling else Problem

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

So, is there a solution to the dangling else problem.

Of course.

You can put one statement in a block. (Aha!)

The Dangling else Problem – The Solution

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

double shipping_charge = 5.00;

 // $5 inside continental

U.S.

if (country == "USA")

{

 if (state == "HI")

 shipping_charge = 10.00;

 // Hawaii is more expensive

}

else

 shipping_charge = 20.00;

 // As are foreign shipments

The Dangling else Problem – The Solution

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Boolean Variables and Operators

Will we remember next time?
 I wish I could put the way to go in my pocket!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Boolean Variables and Operators

• Sometimes you need to evaluate a logical

condition in one part of a program and use it

elsewhere.

• To store a condition that can be true or false,

you use a Boolean variable.

• Boolean variables are named after the

mathematician George Boole (1815–1864),

a pioneer in the study of logic.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Boolean Variables and Operators

He invented an algebra based on only two values.

Two values, eh?

 like true and false

like on and off

 – like electricity!

 In essence he invented the computer!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Boolean Variables and Operators

• In C++, the bool data type represents the
Boolean type.

• Variables of type bool can hold exactly two
values, denoted false and true.

• These values are not strings.

• There values are definitely not integers;

 they are special values, just for Boolean variables.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Boolean Variables

 Here is a definition of a Boolean variable, initialized to
false:

bool failed = false;

 It can be set by an intervening statement so that you can

use the value later in your program to make a decision:

// Only executed if failed has

// been set to true

if (failed)

{

 ...

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Boolean Variables

Sometimes bool variables are called “flag” variables.

The flag is either up or down.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Boolean Operators

At this geyser in Iceland, you can see ice, liquid water, and steam.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Boolean Operators

• Suppose you need to write a program that
processes temperature values, and you want to
test whether a given temperature corresponds to
liquid water.

– At sea level, water freezes at 0 degrees
Celsius and boils at 100 degrees.

• Water is liquid if the temperature is greater than
zero and less than 100.

• This not a simple test condition.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Boolean Operators

• When you make complex decisions, you often
need to combine Boolean values.

• An operator that combines Boolean conditions is
called a Boolean operator.

• Boolean operators take one or two Boolean
values or expressions and combine them into a
resultant Boolean value.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Boolean Operator && (and)

 In C++, the && operator (called and, conjunction)
yields true only when both conditions are true.

 if (temp > 0 && temp < 100)

 {

 cout << "Liquid";

 }

 If temp is within the range, then both the left-hand
side and the right-hand side are true, making the
whole expression‟s value true.

 In all other cases, the whole expression‟s value is
false.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Boolean Operator || (or)

 The || operator (called or, disjunction) yields the
result true if at least one of the conditions is
true.

– This is written as two adjacent vertical bar symbols.

 if (temp <= 0 || temp >= 100)

 {

 cout << "Not liquid";

 }

 If either of the expressions is true,
the whole expression is true.

 The only way “Not liquid” won‟t appear is if both of
the expressions are false.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Boolean Operator ! (not)

 Sometimes you need to invert a condition with the

logical not operator.

 The ! operator takes a single condition and evaluates

to true if that condition is false and to false if the

condition is true.

 if (!frozen) { cout << "Not frozen"; }

 “Not frozen” will be written only when frozen contains
the value false.

 !false is true.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Boolean Operators

This information is traditionally collected into a table called a

truth table:

where A and B denote bool variables or Boolean expressions.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Boolean Operators – Some Examples

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Boolean Operators – Some Examples

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Combining Multiple Relational Operators

 Consider the expression

 if (0 <= temp <= 100)…

 This looks just like the mathematical test:

 0 ≤ temp ≤ 100

 Unfortunately, it is not.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 if (0 <= temp <= 100)…

 The first half, 0 <= temp, is a test.

 The outcome true or false,

depending on the value of temp.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Combining Multiple Relational Operators

 if (<= 100)…

 The outcome of that test (true or false) is then

compared against 100.

 This seems to make no sense.

 Can one compare truth values and integer numbers?

false

true

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Combining Multiple Relational Operators

 if (<= 100)…

 Is true larger than 100 or not?

false

true

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Combining Multiple Relational Operators

 if (<= 100)…

 Unfortunately, to stay compatible with the C language,
C++ converts false to 0 and true to 1.

 0

 1

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Combining Multiple Relational Operators

 if (<= 100)…

 Unfortunately, to stay compatible with the C language,
C++ converts false to 0 and true to 1.

 Therefore, the expression will always evaluate to true.

 0

 1

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Combining Multiple Relational Operators

Another common error, along the same lines, is to write

 if (x && y > 0) ... // Error

instead of

 if (x > 0 && y > 0) ...

 (x and y are ints)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Combining Multiple Relational Operators

Naturally, that computation makes no sense.

 (But it was a good attempt at translating:

 “both x and y must be greater than 0” into

 a C++ expression!).

Again, the compiler would not issue an error message.

It would use the C conversions.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Combining Multiple Relational Operators

Common Error – Confusing && and || Conditions

 It is quite common that the individual conditions

are nicely set apart in a bulleted list, but with little

indication of how they should be combined.

 Our tax code is a good example of this.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Consider these instructions for filing a tax return.

You are of single filing status if any one of the following is true:

 • You were never married.

 • You were legally separated or divorced on the last day of the tax year.

 • You were widowed, and did not remarry.

Is this an && or an || situation?

Since the test passes if any one of the conditions is true,

you must combine the conditions with the or operator.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Confusing && and || Conditions

Elsewhere, the same instructions:

You may use the status of married filing jointly

if all five of the following conditions are true:

 • Your spouse died less than two years ago and you did not remarry.

 • You have a child whom you can claim as dependent.

 • That child lived in your home for all of the tax year.

 • You paid over half the cost of keeping up your home for this child.

 • You filed a joint return with your spouse the year he or she died.

&& or an ||?

Because all of the conditions must be true for the test to pass,

you must combine them with an &&.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Confusing && and || Conditions

Nested Branches –Taxes

Taxes…

Wait, I am still married

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Nested Branches –Taxes

Taxes…

Wait, I am still married

—according to the IRS?!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 When does an expression become true or false?

And once sure, why keep doing anything?

 expression && expression && expression && …

 In an expression involving a series of &&‟s,
we can stop after finding the first false.

 Due to the way the truth table works,
anything and && false is false.

 expression || expression || expression || …

 In an expression involving a series of ||‟s,

we can stop after finding the first true.

 Due to the way the truth table works,
anything and || true is true.

 C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Short Circuit Evaluation

 C++ does stop when it is sure of the value.

 This is called short circuit evaluation.

But not the shocking kind.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Short Circuit Evaluation

 Suppose we want to charge a higher shipping rate

if we don‟t ship within the continental United States.

shipping_charge = 10.00;

if (!(country == "USA"

 && state != "AK"

 && state != "HI"))

 shipping_charge = 20.00;

 This test is a little bit complicated.

 DeMorgan‟s Law to the rescue!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

DeMorgan’s Law

 DeMorgan‟s Law allows us to rewrite complicated

not/and/or messes so that they are more clearly read.

shipping_charge = 10.00;

if (country != "USA"

 || state == "AK"

 || state == "HI")

 shipping_charge = 20.00;

 Ah, much nicer.

 But how did they do that?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

DeMorgan’s Law

 DeMorgan‟s Law:

 !(A && B) is the same as !A || !B

 (change the && to || and negate all the terms)

 !(A || B) is the same as !A && !B

 (change the || to && and negate all the terms)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

DeMorgan’s Law

 So

 !(country == "USA“ && state != "AK" && state != "HI")

 becomes:

 !(country == "USA“) || !(state != "AK“) || !(state != "HI")

 and then we make those silly !(…==…)‟s and !(…!=…)‟s

better by making !(==) be just != and !(!=) be just ==.

 country != "USA“ || state == "AK“ || state == "HI"

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

DeMorgan’s Law

Input Validation with if Statements

You, the C++ programmer, doing Quality Assurance

(by hand!)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Input Validation with if Statements

Let‟s return to the elevator

program and consider input

validation.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Input Validation with if Statements

• Assume that the elevator panel has buttons
labeled 1 through 20 (but not 13!).

• The following are illegal inputs:
– The number 13

– Zero or a negative number

– A number larger than 20

– A value that is not a sequence of digits, such as “five”

• In each of these cases, we will want to give an
error message and exit the program.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Input Validation with if Statements

It is simple to guard against an input of 13:

if (floor == 13)

{

 cout << "Error: "

 << " There is no thirteenth floor."

 << endl;

 return 1;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Input Validation with if Statements

 The statement:

 return 1;

 immediately exits the main function and therefore

terminates the program.

 It is a convention to return with the value 0 if the

program completes normally, and with a non-zero

value when an error is encountered.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Input Validation with if Statements

 To ensure that the user doesn‟t enter a number

outside the valid range:

if (floor <= 0 || floor > 20)

{

 cout << "Error: "

 << " The floor must be between 1 and 20."

 << endl;

 return 1;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Input Validation with if Statements

Dealing with input that is not a valid integer is a

more difficult problem.

What if the user does not type a number in response

to the prompt?

 „F‟ „o‟ „u‟ „r‟ is not an integer response.

When

 cin >> floor;

 is executed, and the user types in a bad input, the
integer variable floor is not set.

 Instead, the input stream cin is set to a failed

state.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Input Validation with if Statements

 You can call the fail member function

to test for that failed state.

 So you can test for bad user input this way:

if (cin.fail())

{

 cout << "Error: Not an integer." << endl;

 return 1;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Input Validation with if Statements

 Later you will learn more robust ways to deal with bad
input, but for now just exiting main with an error report is

enough.

Here‟s the whole program with validity testing:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Input Validation with if Statements – Elevator Program
#include <iostream>

using namespace std;

int main()

{

 int floor;

 cout << "Floor: ";

 cin >> floor;

 // The following statements check various input errors

 if (cin.fail())

 {

 cout << "Error: Not an integer." << endl;

 return 1;

 }

 if (floor == 13)

 {

 cout << "Error: There is no thirteenth floor." << endl;

 return 1;

 }

 if (floor <= 0 || floor > 20)

 {

 cout << "Error: The floor must be between 1 and 20." << endl;

 return 1;

 }

ch03/elevator2.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Input Validation with if Statements – Elevator Program

 // Now we know that the input is valid

 int actual_floor;

 if (floor > 13)

 {

 actual_floor = floor - 1;

 }

 else

 {

 actual_floor = floor;

 }

 cout << "The elevator will travel to the actual floor "

 << actual_floor << endl;

 return 0;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Summary

Use the if statement to implement a decision.

• The if statement allows a program to carry out

 different actions depending on the nature of the data to be

 processed.

Implement comparisons of numbers and objects.

• Relational operators (< <= > >= == !=) are used to compare

 numbers and strings.

• Lexicographic order is used to compare strings.

Implement complex decisions that require multiple if

statements.

• Multiple alternatives are required for decisions that have

 more than two cases.

• When using multiple if statements, pay attention to the

 order of the conditions.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Summary

Implement decisions whose branches require further

decisions.

• When a decision statement is contained inside the branch of

 another decision statement, the statements are nested.

• Nested decisions are required for problems that have two

 levels of decision making.

Draw flowcharts for visualizing the control flow of a

program.

• Flow charts are made up of elements for tasks, input/

 outputs, and decisions.

• Each branch of a decision can contain tasks and further

 decisions.

• Never point an arrow inside another branch.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Summary

Design test cases for your programs.

• Each branch of your program should be tested.

• It is a good idea to design test cases before implementing a

 program.

Use the bool data type to store and combine conditions

that can be true or false.

• The bool type bool has two values, false and true.

• C++ has two Boolean operators that combine conditions:

 && (and) and || (or).

• To invert a condition, use the ! (not) operator.

• The && and || operators use short-circuit evaluation:

 As soon as the truth value is determined, no further

 conditions are evaluated.

• De Morgan‟s law tells you how to negate && and ||

 conditions.
C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Summary

Apply if statements to detect whether user input is valid.

• When reading a value, check that it is within the required

 range.

• Use the fail function to test whether the input stream has

 failed.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

End Decisions II

Slides by Evan Gallagher & Nikolay Kirov

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

