
C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Three: Decisions I

Slides by Evan Gallagher & Nikolay Kirov

Lecture Goals

• To be able to implement decisions using if statements

• To learn how to compare integers, floating-point

numbers, and strings

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement

Decision making

(a necessary thing in non-trivial programs)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement

We aren’t lost!

 We just haven’t decided which way to go … yet.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement

The if statement

 allows a program to carry out different actions

 depending on the nature of the data being processed

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement

The if statement is used to implement a decision.

– When a condition is fulfilled,

one set of statements is executed.

– Otherwise,

another set of statements is executed.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement

if it’s quicker to the candy mountain,

else

 we go that way

 we’ll go that way

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement

The thirteenth floor!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement

The thirteenth floor!

It’s missing!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement

The thirteenth floor!

It’s missing!

OH NO !!!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement

We must write the code

to control the elevator.

How can we skip the

13th floor?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement

 We will model a person choosing

a floor by getting input from the user:

 int floor;

 cout << "Floor: ";

 cin >> floor;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

If the user inputs 20,
the program must set the actual floor to 19.

Otherwise,
we simply use the supplied floor number.

We need to decrement the input only under a certain condition:

int actual_floor;

if (floor > 13)

{

 actual_floor = floor - 1;

}

else

{

 actual_floor = floor;

}

The if Statement

The if Statement

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement – The Flowchart

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement

Sometimes, it happens that there is nothing
to do in the else branch of the statement.

So don’t write it.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement

Here is another way to write this code:

We only need to decrement

when the floor is greater than 13.

We can set actual_floor before testing:

int actual_floor = floor;

if (floor > 13)

{

 actual_floor--;

} // No else needed

(And you’ll notice we used the decrement operator this time.)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement – The Flowchart

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement – A Complete Elevator Program
#include <iostream>

using namespace std;

int main()

{

 int floor;

 cout << "Floor: ";

 cin >> floor;

 int actual_floor;

 if (floor > 13)

 {

 actual_floor = floor - 1;

 }

 else

 {

 actual_floor = floor;

 }

 cout << "The elevator will travel to the actual floor "

 << actual_floor << endl;

 return 0;

}

ch03/elevator1.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement – Brace Layout

• Making your code easy to read is good practice.

• Lining up braces vertically helps.

 if (floor > 13)

 {

 floor--;

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement – Brace Layout

• As long as the ending brace clearly shows what it

is closing, there is no confusion.

 if (floor > 13) {

 floor--;

 }

Some programmers prefer this style

—it saves a physical line in the code.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement – Brace Layout

This is a passionate and ongoing argument,

but it is about style, not substance.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement – Brace Layout

 It is important that you pick a layout

scheme and stick with it consistently

within a given programming project.

Which scheme you choose may depend on

• your personal preference

• a coding style guide that you need to follow

 (that would be your boss’ style)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement – Always Use Braces

 When the body of an if statement consists of

a single statement, you need not use braces:

 if (floor > 13)

 floor--;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement – Always Use Braces

However, it is a good idea to always include the braces:

– the braces makes your code easier to read, and

– you are less likely to make errors such as …

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement – Common Error – The Do-nothing Statement

Can you see the error?

 if (floor > 13) ;

 {

 floor--;

 }

ERROR

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

if (floor > 13) ; // ERROR ?

{

 floor--;

}

 This is not a compiler error.

 The compiler does not complain.
 It interprets this if statement as follows:

If floor is greater than 13, execute the do-nothing statement.

(semicolon by itself is the do nothing statement)

Then after that execute the code enclosed in the braces.

Any statements enclosed in the braces are no longer a

part of the if statement.

The if Statement – Common Error – The Do-nothing Statement

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement – Common Error – The Do-nothing Statement

Can you see the error?

This one should be easy now!

 if (floor > 13)

 {

 actual_floor = floor - 1;

 }

 else ;

 {

 actual_floor = floor;

 }

 And it really is an error this time.

ERROR

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Block-structured code has the property that nested
statements are indented by one or more levels.

int main()

{

 int floor;

 ...

 if (floor > 13)

 {

 floor--;

 }

 ...

 return 0;

}

0 1 2

Indentation level

The if Statement – Indent when Nesting

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Using the tab key is a way to get this indentation

 but …

not all tabs are the same width!

 Luckily most development environments have

settings to automatically convert all tabs to spaces.

The if Statement – Indent when Nesting

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Conditional Operator

Sometimes you might find yourself wanting
to do this:

cout << if (floor > 13)

 {

 floor - 1;

 }

 else

 {

 floor;

 }

Statements don’t have any value so they can’t be output.
But it’s a nice idea.

The Conditional Operator

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ has the conditional operator of the form

 condition ? value1 : value2

The value of that expression is either value1 if the test
passes or value2 if it fails.

The Conditional Operator

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

For example, we can compute the actual floor number as

 actual_floor = floor > 13 ? floor - 1 : floor;

which is equivalent to

if (floor > 13)

{

 actual_floor = floor - 1;

}

else

{

 actual_floor = floor;

}

The Conditional Operator

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

You can use the conditional operator anywhere that a

value is expected, for example:

cout << "Actual floor: " << (floor > 13 ? floor - 1 : floor);

We don’t use the conditional operator in this book, but it is a

convenient construct that you will find in many C++ programs.

The Conditional Operator

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement – Removing Duplication

if (floor > 13)

{

 actual_floor = floor - 1;

 cout << "Actual floor: " << actual_floor << endl;

}

else

{

 actual_floor = floor;

 cout << "Actual floor: " << actual_floor << endl;

}

Do you find anything curious in this code?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement – Removing Duplication

if (floor > 13)

{

 actual_floor = floor - 1;

 cout << "Actual floor: " << actual_floor << endl;

}

else

{

 actual_floor = floor;

 cout << "Actual floor: " << actual_floor << endl;

}

 Hmmm…

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement – Removing Duplication

if (floor > 13)

{

 actual_floor = floor - 1;

 cout << "Actual floor: " << actual_floor << endl;

}

else

{

 actual_floor = floor;

 cout << "Actual floor: " << actual_floor << endl;

}

 Do these depend

 on the test?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The if Statement – Removing Duplication

if (floor > 13)

{

 actual_floor = floor - 1;

 }

else

{

 actual_floor = floor;

}

cout << "Actual floor: " << actual_floor << endl;

 You should remove

 this duplication.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Relational Operators

Which way is quicker to the candy mountain?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Relational Operators

Let’s compare the distances.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Relational Operators

 Relational operators

 < >=

 > <=

 == !=

 are used to compare numbers and strings.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Relational Operators

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Relational Operators

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Relational Operators

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Relational Operators – Some Notes

 Computer keyboards do not have keys for:

 ≥

 ≤

 ≠

 but these operators:

 >=

 <=

 !=

 look similar

(and you can type them).

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Relational Operators – Some Notes

 The == operator is initially confusing to beginners.

 In C++, = already has a meaning, namely assignment

 The == operator denotes equality testing:

 floor = 13; // Assign 13 to floor

 // Test whether floor equals 13

 if (floor == 13)

 You can compare strings as well:

 if (input == "Quit") ...

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Confusing = and ==

 The C++ language allows the use of = inside tests.

 To understand this, we have to go back in time.

 The creators of C, the predecessor to C++, were
very frugal thus C did not have true and false values.

 Instead, they allowed any numeric value inside a condition
with this interpretation:

 0 denotes false
 any non-0 value denotes true.

 In C++ you should use the bool values true and false

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Confusing = and ==

 Furthermore, in C and C++ assignments have values.

 The value of the assignment expression floor = 13 is 13.

 These two features conspire to make a horrible pitfall:

 if (floor = 13) …

 is legal C++.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Confusing = and ==

 The code sets floor to 13,

and since that value is not zero,
the condition of the if statement is always true.

 if (floor = 13) …

 (and it’s really hard to find this error at 3:00am

 when you’ve been coding for 13 hours straight)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Confusing = and ==

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Don’t be shell-shocked by this

 and go completely the other way:

 floor == floor - 1; // ERROR

 This statement tests whether floor equals floor - 1.

It doesn’t do anything with the outcome of the test,

 but that is not a compiler error.

 Nothing really happens

 (which is probably not what you meant to do

 – so that’s the error).

Common Error – Confusing = and ==

 You must remember:

 Use == inside tests.

 Use = outside tests.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Kinds of Error Messages

 There are two kinds of errors:

 Warnings

 Errors

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Kinds of Error Messages

• Error messages are fatal.

– The compiler will not translate a program with

one or more errors.

• Warning messages are advisory.

– The compiler will translate the program,

but there is a good chance that the program

will not do what you expect it to do.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Kinds of Error Messages

 It is a good idea to learn how to activate

warnings in your compiler.

 It as a great idea to write code that

emits no warnings at all.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Kinds of Error Messages

 We stated there are two kinds of errors.

 Actually there’s only one kind:

The ones you must read
(that’s all of them!)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Kinds of Error Messages

 Read all comments and deal with them.

 If you understand a warning, and understand why it is

happening, and you don’t care about that reason

– Then, and only then, should you ignore a warning.

and, of course,

you can’t ignore an error message!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Exact Comparison of Floating-Point Numbers

Round off errors

Floating-point numbers have only a limited precision.

Calculations can introduce roundoff errors.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Exact Comparison of Floating-Point Numbers

 Roundoff errors

Does == 2 ?

Let’s see (by writing code, of course) …

r
2

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Exact Comparison of Floating-Point Numbers

double r = sqrt(2.0);

if (r * r == 2)

{

 cout << "sqrt(2) squared is 2" << endl;

}

else

{

 cout << "sqrt(2) squared is not 2 but "

 << setprecision(18) << r * r << endl;

}

This program displays:

sqrt(2) squared is not 2 but 2.00000000000000044

roundoff error

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Exact Comparison of Floating-Point Numbers

 Roundoff errors – a solution

 Close enough will do.

yx

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Exact Comparison of Floating-Point Numbers

 Mathematically, we would write that x and y are

close enough if for a very small number, ε:

 ε is the Greek letter epsilon, a letter used to

denote a very small quantity.

yx

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error – Exact Comparison of Floating-Point Numbers

 It is common to set ε to 10–14 when comparing
double numbers:

 const double EPSILON = 1E-14;

 double r = sqrt(2.0);

 if (fabs(r * r - 2) < EPSILON)

 {

 cout << "sqrt(2) squared is approximately ";

 }

 Include the <cmath> header to use sqrt and

the fabs function which gives the absolute value.

 Try round.cpp.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Lexicographical Ordering of Strings

 Comparing strings uses ―lexicographical‖ order to decide which

is larger or smaller or if two strings are equal.

―Dictionary order‖ is another way to think about

―lexicographical‖ (and it’s a little bit easier to pronounce).

 string name = "Tom";

 if (name < "Dick")...

 The test is false because ―Dick‖

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Lexicographical Ordering of Strings

 Comparing strings uses ―lexicographical‖ order to decide which

is larger or smaller or if two strings are equal.

―Dictionary order‖ is another way to think about

―lexicographical‖ (and it’s a little bit easier to pronounce).

 string name = "Tom";

 if (name < "Dick")...

 The test is false because ―Dick‖ would come before ―Tom‖

 if they were words in a dictionary.

 (not to be confused with dicktionary – if there is such a word)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Lexicographical Ordering of Strings

• All uppercase letters come before the lowercase

letters.

For example, "Z" comes before "a".

• The space character comes before all printable

characters.

• Numbers come before letters.

• The punctuation marks are ordered but we won’t

go into that now.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Lexicographical Ordering of Strings

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

ASCII Table

(American Standard Code for Information Interchange)

0-31 are control codes, for example "/n" (newline) has ASCII code 10.
 32: 33:! 34:" 35:# 36:$ 37:% 38:& 39:' 40:(41:)

 42:* 43:+ 44:, 45:- 46:. 47:/ 48:0 49:1 50:2 51:3

 52:4 53:5 54:6 55:7 56:8 57:9 58:: 59:; 60:< 61:=

 62:> 63:? 64:@ 65:A 66:B 67:C 68:D 69:E 70:F 71:G

 72:H 73:I 74:J 75:K 76:L 77:M 78:N 79:O 80:P 81:Q

 82:R 83:S 84:T 85:U 86:V 87:W 88:X 89:Y 90:Z 91:[

 92:\ 93:] 94:^ 95:_ 96:` 97:a 98:b 99:c 100:d 101:e

 102:f 103:g 104:h 105:i 106:j 107:k 108:l 109:m 110:n 111:o

 112:p 113:q 114:r 115:s 116:t 117:u 118:v 119:w 120:x 121:y

 122:z 123:{ 124:| 125:} 126:~ 127:• 128:Ђ 129:Ѓ 130:‚ 131:ѓ

 132:„ 133:… 134:† 135:‡ 136:€ 137:‰ 138:Љ 139:‹ 140:Њ 141:Ќ

 142:Ћ 143:Ў 144:ђ 145:‗ 146:‘ 147:― 148:‖ 149:• 150:– 151:—

 152: 153:™ 154:љ 155:› 156:њ 157:ќ 158:ћ 159:ў 160: 161:Ѝ
 162:ѝ 163:Ј 164:¤ 165:џ 166:¦ 167:§ 168:Ё 169:© 170:Є 171:«

 172:¬ 173:­ 174:® 175:Ї 176:°177:± 178:І 179:і 180:Ѡ 181:µ

 182:¶ 183:· 184:ё 185:№ 186:є 187:» 188:ј 189:Ѕ 190:ѕ 191:ї

 192:Џ 193:А 194:Б 195:В 196:Г 197:Д 198:Е 199:Ж 200:З 201:И

 202:Й 203:К 204:Л 205:М 206:Н 207:О 208:П 209:Р 210:С 211:Т

 212:У 213:Ф 214:Х 215:Ц 216:Ч 217:Ш 218:Щ 219:Ъ 220:Ы 221:Ь

 222:Э 223:Ю 224:Я 225:а 226:б 227:в 228:г 229:д 230:е 231:ж

 232:з 233:и 234:й 235:к 236:л 237:м 238:н 239:о 240:п 241:р

 242:с 243:т 244:у 245:ф 246:х 247:ц 248:ч 249:ш 250:щ 251:ъ

 252:ы 253:ь 254:э 255:•

This is Windows-1251 encoding table.

Lexicographical Ordering of Strings

When comparing two strings,

you compare the first letters of each word, then the

second letters, and so on, until:

– one of the strings ends

– you find the first letter pair that doesn’t match.

If one of the strings ends, the longer string is

considered the ―larger‖ one.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Lexicographical Ordering of Strings

For example, compare "car" with "cart".

 c a r

 c a r t

The first three letters match, and we reach the end of
the first string – making it less than the second.

Therefore "car" comes before "cart" in lexicographic
ordering.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Lexicographical Ordering of Strings

When you reach a mismatch, the string containing
the ―larger‖ character is considered ―larger‖.

For example, let’s compare "cat" with "cart".

 c a t

 c a r t

The first two letters match.

Since t comes after r, the string "cat" comes after "cart―
in the lexicographic ordering.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

End Decisions I

Slides by Evan Gallagher & Nikolay Kirov

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

