Дадена е раница с вместимост M килограма и N предмета, всеки от които се характеризира с две числа - тегло mi и стойност ci. Да се избере такова множество от предмети, чиято сумарна стойност е максимална, а сумата от теглата не надвишава M.
Дефинираме рекурентна целева функция:
F(0) = 0; F(i) = max { cj + F(i - mj), j = 1, 2, ..., N, mj ≤ i }, i > 0
Методът на динамичното оптимиране изисква последователно пресмятане на стойностите на F(i), като за това пресмятане се използват вече пресметнатите стойности за по-малки i.
Да разгледаме примера:
N = 8;
index 1 2 3 4 5 6 7 8
m[8] 3, 7, 6, 1, 2, 4, 5, 5
c[8] 5, 3, 9, 1, 1, 2, 5, 2
M = 8;
Fn[0] = 0;
Fn[1] = max{c[4]+Fn[0]} = 1;
set[1][4]=1; set[1] = {0,0,0,1,0,0,0}
Fn[2] = max{c[4]+Fn[1], c[5]+Fn[0]} = 1
set[2][5]=1; set[2] = {0,0,0,0,1,0,0}
Fn[3] = max{c[1]+Fn[0], c[4]+Fn[2], c[5]+Fn[1]} =
max{5 +0, 1 +1, 1 +1} = 5
set[3][1]=1; set[3] = {1,0,0,0,0,0,0}
Fn[4] = max{c[1]+Fn[1], c[4]+Fn[3], c[5]+Fn[2], c[6]+Fn[0]} =
max{5 +1, 1 +5, 1 +1, 2 +0} = 6
set[4][1]=1; set[4] = {1,0,0,1,0,0,0}
Fn[5] = max{c[1]+Fn[2],c[4]+Fn[4],c[5]+Fn[3],c[6]+Fn[1],c[7]+Fn[0],c[8]+Fn[0]} =
max{5 +1, 1 +6, 1 +5, 2 +1, 5 +0, 2 +0} = 6
set[5][1]=1; set[5] = {1,0,0,0,1,0,0}
Fn[6] = max{c[1]+Fn[3],c[3]+Fn[0],c[4]+Fn[5],c[5]+Fn[4],c[6]+Fn[2],c[7]+Fn[2],c[8]+Fn[1]} =
max{5 +5, 9 +0, 1 +5, 1 +6, 2 +1, 5 +1, 2 +1} = 9
set[6][3]=1; set[6] = {0,0,1,0,0,0,0}
Fn[7] = max{c[1]+Fn[4],c[2]+Fn[0],c[3]+Fn[1],c[4]+Fn[6],c[6]+Fn[5],c[7]+Fn[2],c[8]+Fn[2]} =
max{5 +6, 5 +0, 9 +1, 1 +9, 2 +6, 5 +1, 2 +1} = 10
set[7][3]=1; set[7] = {0,0,1,1,0,0,0}
Fn[8] = max{c[1]+Fn[5],c[2]+Fn[1],c[3]+Fn[2],c[4]+Fn[7],c[6]+Fn[4],c[7]+Fn[3],c[8]+Fn[3]} =
max{5 +6, 5 +1, 9 +1, 1 +10, 2 +6, 5 +1, 2 +1} = 10
set[8][3]=1; set[8] = {0,0,1,0,1,0,0}
Програма на С++ за решаване на задачата.
Варианти на алгоритъма за решаване на задчата:
Варианти на задачата за раницата: