
Sets 1

Sets

Sets 2

Storing a Set in a List
We can implement a set with a list
Elements are stored sorted according to some
canonical ordering
The space used is O(n)

Nodes storing set elements in order

List ∅

Set elements

Sets 3

Generic Merging (§10.2)
Algorithm genericMerge(A, B)

S ← empty sequence
while ¬A.isEmpty() ∧ ¬B.isEmpty()

a ← A.first().element(); b ← B.first().element()
if a < b

aIsLess(a, S); A.remove(A.first())
else if b < a

bIsLess(b, S); B.remove(B.first())
else { b = a }

bothEqual(a, b, S)
A.remove(A.first()); B.remove(B.first())

while ¬A.isEmpty()
aIsLess(a, S); A.remove(A.first())

while ¬B.isEmpty()
bIsLess(b, S); B.remove(B.first())

return S

Generalized merge
of two sorted lists
A and B
Template method
genericMerge
Auxiliary methods

aIsLess
bIsLess
bothEqual

Runs in O(nA +nB)
time provided the
auxiliary methods
run in O(1) time

Sets 4

Using Generic Merge
for Set Operations

Any of the set operations can be
implemented using a generic merge
For example:

For intersection: only copy elements that
are duplicated in both list
For union: copy every element from both
lists except for the duplicates

All methods run in linear time.

Sets 5

Set Operations
We represent a set by the
sorted sequence of its
elements
By specializing the auxliliary
methods he generic merge
algorithm can be used to
perform basic set
operations:

union
intersection
subtraction

The running time of an
operation on sets A and B
should be at most O(nA+nB)

Set union:
aIsLess(a, S)

S.insertFirst(a)
bIsLess(b, S)

S.insertLast(b)
bothAreEqual(a, b, S)

S. insertLast(a)
Set intersection:

aIsLess(a, S)
{ do nothing }

bIsLess(b, S)
{ do nothing }

bothAreEqual(a, b, S)
S. insertLast(a)

	Sets
	Storing a Set in a List
	Generic Merging (§10.2)
	Using Generic Merge for Set Operations
	Set Operations

