UV

Bucket-Sort and Radix-Sort

(7[3,a 73,b/v[7,d]—[7,g]—
EIE o Tlo|lole|a|w

0 1 2 3 45 6 7 8 9

AN

Bucket-Sort and Radix-Sort

N

Let be S be a sequence of n
(key, element) items with keys
in the range [0, NV — 1]

Bucket-sort uses the keys as
indices into an auxiliary array B
of sequences (buckets)

Phase 1: Empty sequence S by
moving each item (k, o) into its
bucket B[k]

Phase 2: Fori=0, ..., N— 1, move
the items of bucket BJ[i] to the
end of sequence S

Analysis:
= Phase 1 takes O(n) time
= Phase 2 takes O(n + N) time
Bucket-sort takes O(n + N) time

Bucket-Sort (§10.5.1)

«

Algorithm bucketSort(S, N)
Input sequence § of (key, element)
items with keys in the range
[0, N —1]
Output sequence § sorted by
increasing keys
B < array of N empty sequences
while —=S.isEmpty()
f< S.first()
(k, 0) < S.remove(f)
B|k].insertLast((k, 0))
fori<—0OtoN—-1
while —B|i|.isEmpty()
f <« Bli].first()
(k, 0) < BJi].remove(f)
S.insertLast((k, 0))

Bucket-Sort and Radix-Sort 2

N
\J

Example

Key range [0, 9]

Bucket-Sort and Radix-Sort

Properties and Extensions

N

I

Key-type Property Extensions

= The keys are used as = Integer keys in the range [a, b]
indices into an array + Put item (k, o) into bucket
and cannot be arbitrary Blk—al
objects = String keys from a set D of

possible strings, where D has
= No external comparator constant size (e.g., names of
Stable Sort Property the 50 U.S. states)
- + Sort D and compute the rank
= The relative order of r(k) of each string k of D in
any two items with the the sorted sequence
same key is preserved + Put item (k, o) into bucket
after the execution of B[r(k)]

the algorithm

Bucket-Sort and Radix-Sort 4

N

Lexicographic Order

A d-tuple is a sequence of d keys (k, k,, ..., k,), where
Key k; is said to be the i-th dimension of the tuple

Example:
= The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively
defined as follows

(X1, X5, ee0s X)) < (Vs Vs eees V)
=

X <PV X =PI (X, e, X)) < (Vs 0005 V)
I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

Bucket-Sort and Radix-Sort 5

Lexicographic-Sort

N

®

®

Let C; be the comparator
that compares two tuples by
their i-th dimension

Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C

Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension

Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

Algorithm lexicographicSort(S)

Input sequence § of d-tuples
Output sequence S sorted in
lexicographic order

for i < d downto 1
stableSort(S, C,)

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3,2, 4)
(2, 1,4)(3,2,4)(5,1,5) (7,4,6) (2,4,6)
2, 1,4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)
(2, 1,4) (2,4,6) (3, 2,4) (5,1,5) (7,4,6)

Bucket-Sort and Radix-Sort 6

N

Radix-sort is a
specialization of

uses bucket-sort as

in each dimension

to tuples where the

lexicographic-sort that

stable sorting algorithm

/Radix-Sort (§10.5.2) %§®

20

the

Algorithm radixSort(S, N)

Radix-sort is applicable Input sequence § of d-tuples such

that (0, ..., 0) < (x,, ..., X,) and

keys in each dimension i (X5 cees X)) S(N=1, ooy, N= 1)

are integers in the
range [0, N — 1]

Radix-sort runs in time

O(d(n + N))

for each tuple (xy ..., x,) In S
Output sequence S sorted in
lexicographic order

for i < d downto 1
bucketSort(S, N)

Bucket-Sort and Radix-Sort 7

Radix-Sort for
Binary Numbers

N

Consider a sequence of n

b-bit integers
X=Xp_ .00 XX,

We represent each element
as a b-tuple of integers in
the range [0, 1] and apply
radix-sort with N =2

This application of the
radix-sort algorithm runs in
O(bn) time

For example, we can sort a
sequence of 32-bit integers
in linear time

O Ch

Algorithm binaryRadixSort(S)

Input sequence § of h-bit
integers
Output sequence S sorted

replace each element x
of § with the item (0, x)

fori<0Otobh—1

replace the key k of
each item (k, x) of S
with bit x; of x

bucketSort(S, 2)

Bucket-Sort and Radix-Sort 8

N

)

1001

1110

Example

Sorting a sequence of 4-bit integers

)

bo10

—

1110

—

)

1001

—

11@

—

0010

N——

1110

1001

0001

1110

boot

0010

1110

N—

0001

N—

Bucket-Sort and Radix-Sort

	Bucket-Sort and Radix-Sort
	Bucket-Sort (§10.5.1)
	Example
	Properties and Extensions
	Lexicographic Order
	Lexicographic-Sort
	Radix-Sort (§10.5.2)
	Radix-Sort for Binary Numbers
	Example

