
Quick-Sort 1

Quick-Sort

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

Quick-Sort 2

Outline and Reading

Quick-sort (§10.3)
Algorithm
Partition step
Quick-sort tree
Execution example

Analysis of quick-sort (§10.3.1)
In-place quick-sort (§10.3.1)
Summary of sorting algorithms

Quick-Sort 3

Quick-Sort
Quick-sort is a randomized
sorting algorithm based
on the divide-and-conquer
paradigm:

Divide: pick a random
element x (called pivot) and
partition S into

L elements less than x
E elements equal x
G elements greater than x

Recur: sort L and G
Conquer: join L, E and G

x

x

L E G

x

Quick-Sort 4

Partition
Algorithm partition(S, p)

Input sequence S, position p of pivot
Output subsequences L, E, G of the

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

y ← S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G

We partition an input
sequence as follows:

We remove, in turn, each
element y from S and
We insert y into L, E or G,
depending on the result of
the comparison with the
pivot x

Each insertion and removal
is at the beginning or at the
end of a sequence, and
hence takes O(1) time
Thus, the partition step of
quick-sort takes O(n) time

Quick-Sort 5

Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree

Each node represents a recursive call of quick-sort and stores
Unsorted sequence before the execution and its pivot
Sorted sequence at the end of the execution

The root is the initial call
The leaves are calls on subsequences of size 0 or 1

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

Quick-Sort 6

Execution Example
Pivot selection

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

2 → 2 3 → 3 8 → 89 4 → 4 9

9 → 9 4 → 4

Quick-Sort 7

Execution Example (cont.)
Partition, recursive call, pivot selection

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 2 4 7 9 3 8 6 1 → 1 3 8 6

9 4 → 4 9 3 → 3 8 → 82 → 2

9 → 9 4 → 4

Quick-Sort 8

Execution Example (cont.)
Partition, recursive call, base case

7 2 9 4 3 7 6 1 → → 1 2 3 4 6 7 8 9

2 4 3 1 →→ 2 4 7 3 8 6 1 → 1 3 8 6

1 → 1 9 4 → 4 9 3 → 3 8 → 8

9 → 9 4 → 4

Quick-Sort 9

Execution Example (cont.)
Recursive call, …, base case, join

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

Quick-Sort 10

Execution Example (cont.)

Recursive call, pivot selection

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

7 9 7 1 → 1 3 8 6

8 → 8

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4 9 → 9

9 → 9 4 → 4

Quick-Sort 11

Execution Example (cont.)
Partition, …, recursive call, base case

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

7 9 7 1 → 1 3 8 6

8 → 8

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4 9 → 9

9 → 9 4 → 4

Quick-Sort 12

Execution Example (cont.)
Join, join

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

7 9 7 → 17 7 9

8 → 8

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4 9 → 9

9 → 9 4 → 4

Quick-Sort 13

Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element
One of L and G has size n − 1 and the other has size 0
The running time is proportional to the sum

n + (n − 1) + … + 2 + 1
Thus, the worst-case running time of quick-sort is O(n2)

timedepth

1n − 1

……

n − 11

n0

…

Quick-Sort 14

Expected Running Time
Consider a recursive call of quick-sort on a sequence of size s

Good call: the sizes of L and G are each less than 3s/4
Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
1/2 of the possible pivots cause good calls:

7 9 7 1 → 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bad pivots Good pivots Bad pivots

Quick-Sort 15

Expected Running Time, Part 2
Probabilistic Fact: The expected number of coin tosses required in
order to get k heads is 2k
For a node of depth i, we expect

i/2 ancestors are good calls
The size of the input sequence for the current call is at most (3/4)i/2n

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

Therefore, we have
For a node of depth 2log4/3n,
the expected input size is one
The expected height of the
quick-sort tree is O(log n)

The amount or work done at the
nodes of the same depth is O(n)
Thus, the expected running time
of quick-sort is O(n log n)

Quick-Sort 16

In-Place Quick-Sort
Quick-sort can be implemented
to run in-place
In the partition step, we use
replace operations to rearrange
the elements of the input
sequence such that

the elements less than the
pivot have rank less than h
the elements equal to the pivot
have rank between h and k
the elements greater than the
pivot have rank greater than k

The recursive calls consider
elements with rank less than h
elements with rank greater
than k

Algorithm inPlaceQuickSort(S, l, r)
Input sequence S, ranks l and r
Output sequence S with the

elements of rank between l and r
rearranged in increasing order

if l ≥ r
return

i ← a random integer between l and r
x ← S.elemAtRank(i)
(h, k) ← inPlacePartition(x)
inPlaceQuickSort(S, l, h − 1)
inPlaceQuickSort(S, k + 1, r)

Quick-Sort 17

In-Place Partitioning
Perform the partition using two indices to split S into L
and E∪G (a similar method can split E∪G into E and G).

Repeat until j and k cross:
Scan j to the right until finding an element > x.
Scan k to the left until finding an element < x.
Swap elements at indices j and k

j k
(pivot = 6)3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

Quick-Sort 18

Summary of Sorting Algorithms

in-place, randomized
fastest (good for large inputs)

O(n log n)
expectedquick-sort

sequential data access
fast (good for huge inputs)O(n log n)merge-sort

in-place
fast (good for large inputs)O(n log n)heap-sort

O(n2)

O(n2)

Time

insertion-sort

selection-sort

Algorithm Notes

in-place
slow (good for small inputs)

in-place
slow (good for small inputs)

	Quick-Sort
	Outline and Reading
	Quick-Sort
	Partition
	Quick-Sort Tree
	Execution Example
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Worst-case Running Time
	Expected Running Time
	Expected Running Time, Part 2
	In-Place Quick-Sort
	In-Place Partitioning
	Summary of Sorting Algorithms

