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Quick-Sort

7  4  9  6 2  → 2  4  6 7  9

4 2  → 2  4 7 9  → 7 9

2 → 2 9 → 9
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Outline and Reading

Quick-sort (§10.3)
Algorithm
Partition step
Quick-sort tree
Execution example

Analysis of quick-sort (§10.3.1)
In-place quick-sort (§10.3.1)
Summary of sorting algorithms
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Quick-Sort
Quick-sort is a randomized 
sorting algorithm based 
on the divide-and-conquer 
paradigm:

Divide: pick a random 
element x (called pivot) and 
partition S into 

L elements less than x
E elements equal x
G elements greater than x

Recur: sort L and G
Conquer: join L, E and G

x

x

L E G

x
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Partition
Algorithm partition(S, p)

Input sequence S, position p of pivot 
Output subsequences L, E, G of the 

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

y ← S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G

We partition an input 
sequence as follows:

We remove, in turn, each 
element y from S and 
We insert y into L, E or G,
depending on the result of 
the comparison with the 
pivot x

Each insertion and removal 
is at the beginning or at the 
end of a sequence, and 
hence takes O(1) time
Thus, the partition step of 
quick-sort takes O(n) time



Quick-Sort 5

Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree

Each node represents a recursive call of quick-sort and stores
Unsorted sequence before the execution and its pivot
Sorted sequence at the end of the execution

The root is the initial call 
The leaves are calls on subsequences of size 0 or 1

7  4  9  6 2  → 2  4  6 7  9

4 2  → 2  4 7 9  → 7 9

2 → 2 9 → 9
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Execution Example
Pivot selection

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

7  2  9  4  → 2  4  7  9 3  8  6  1  → 1  3  8  6

2 → 2 3 → 3 8 → 89  4  → 4  9

9 → 9 4 → 4
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Execution Example (cont.)
Partition, recursive call, pivot selection

7  2  9  4  3  7  6 1 → 1  2  3  4  6  7  8  9

2 4  3  1 → 2  4  7  9 3  8  6  1  → 1  3  8  6

9  4  → 4  9 3 → 3 8 → 82 → 2

9 → 9 4 → 4
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Execution Example (cont.)
Partition, recursive call, base case

7  2  9  4 3  7  6 1 → → 1  2  3  4  6  7  8  9

2 4  3  1 →→ 2  4  7  3  8  6  1  → 1  3  8  6

1 → 1 9  4  → 4  9 3 → 3 8 → 8

9 → 9 4 → 4
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Execution Example (cont.)
Recursive call, …, base case, join

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

3  8  6  1  → 1  3  8  6

3 → 3 8 → 8

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

9 → 9 4 → 4
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Execution Example (cont.)

Recursive call, pivot selection

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

7  9  7 1  → 1  3  8  6

8 → 8

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4 9 → 9

9 → 9 4 → 4
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Execution Example (cont.)
Partition, …, recursive call, base case

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

7  9  7 1  → 1  3  8  6

8 → 8

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4 9 → 9

9 → 9 4 → 4
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Execution Example (cont.)
Join, join

7  2  9  4  3  7  6 1  → 1  2  3  4  6 7  7  9

7 9  7 → 17 7 9

8 → 8

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4 9 → 9

9 → 9 4 → 4
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Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique 
minimum or maximum element
One of L and G has size n − 1 and the other has size 0
The running time is proportional to the sum

n + (n − 1) + … + 2 + 1
Thus, the worst-case running time of quick-sort is O(n2)

timedepth

1n − 1

……

n − 11

n0

…
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Expected Running Time
Consider a recursive call of quick-sort on a sequence of size s

Good call: the sizes of L and G are each less than 3s/4
Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
1/2 of the possible pivots cause good calls:

7  9  7 1  → 1

7  2  9  4 3  7  6 1 9

2  4  3  1 7 2 9 4 3 7 61

7  2 9  4 3  7  6  1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bad pivots Good pivots Bad pivots
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Expected Running Time, Part 2
Probabilistic Fact: The expected number of coin tosses required in 
order to get k heads is 2k
For a node of depth i, we expect

i/2 ancestors are good calls
The size of the input sequence for the current call is at most (3/4)i/2n

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

Therefore, we have
For a node of depth 2log4/3n, 
the expected input size is one
The expected height of the 
quick-sort tree is O(log n)

The amount or work done at the 
nodes of the same depth is O(n)
Thus, the expected running time 
of quick-sort is O(n log n)



Quick-Sort 16

In-Place Quick-Sort
Quick-sort can be implemented 
to run in-place
In the partition step, we use 
replace operations to rearrange 
the elements of the input 
sequence such that

the elements less than the 
pivot have rank less than h
the elements equal to the pivot 
have rank between h and k
the elements greater than the 
pivot have rank greater than k

The recursive calls consider
elements with rank less than h
elements with rank greater 
than k

Algorithm inPlaceQuickSort(S, l, r)
Input sequence S, ranks l and r
Output sequence S with the

elements of rank between l and r
rearranged in increasing order

if l ≥ r
return

i ← a random integer between l and r
x ← S.elemAtRank(i)
(h, k) ← inPlacePartition(x)
inPlaceQuickSort(S, l, h − 1)
inPlaceQuickSort(S, k + 1, r)
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In-Place Partitioning
Perform the partition using two indices to split S into L 
and E∪G (a similar method can split E∪G into E and G).

Repeat until j and k cross:
Scan j to the right until finding an element > x.
Scan k to the left until finding an element < x.
Swap elements at indices j and k

j k
(pivot = 6)3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6 9

j k

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6 9
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Summary of Sorting Algorithms

in-place, randomized
fastest (good for large inputs)

O(n log n)
expectedquick-sort

sequential data access
fast  (good for huge inputs)O(n log n)merge-sort

in-place
fast (good for large inputs)O(n log n)heap-sort

O(n2)

O(n2)

Time

insertion-sort

selection-sort

Algorithm Notes

in-place
slow (good for small inputs)

in-place
slow (good for small inputs)
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