
Merge Sort 1

Merge Sort

7 2  9 4 → 2 4 7 9

7  2 → 2 7 9  4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

Merge Sort 2

Outline and Reading
Divide-and-conquer paradigm (§10.1.1)
Merge-sort (§10.1)

Algorithm
Merging two sorted sequences
Merge-sort tree
Execution example
Analysis

Generic merging and set operations (§10.2)
Summary of sorting algorithms

Merge Sort 3

Divide-and-Conquer
Divide-and conquer is a
general algorithm design
paradigm:

Divide: divide the input data
S in two disjoint subsets S1
and S2
Recur: solve the
subproblems associated
with S1 and S2
Conquer: combine the
solutions for S1 and S2 into a
solution for S

The base case for the
recursion are subproblems of
size 0 or 1

Merge-sort is a sorting
algorithm based on the
divide-and-conquer
paradigm
Like heap-sort

It uses a comparator
It has O(n log n) running
time

Unlike heap-sort
It does not use an
auxiliary priority queue
It accesses data in a
sequential manner
(suitable to sort data on a
disk)

Merge Sort 4

Merge-Sort
Merge-sort on an input
sequence S with n
elements consists of
three steps:

Divide: partition S into
two sequences S1 and S2
of about n/2 elements
each
Recur: recursively sort S1
and S2

Conquer: merge S1 and
S2 into a unique sorted
sequence

Algorithm mergeSort(S, C)
Input sequence S with n

elements, comparator C
Output sequence S sorted

according to C
if S.size() > 1

(S1, S2) ← partition(S, n/2)
mergeSort(S1, C)
mergeSort(S2, C)
S ← merge(S1, S2)

Merge Sort 5

Merging Two Sorted Sequences
Algorithm merge(A, B)

Input sequences A and B with
n/2 elements each

Output sorted sequence of A ∪ B

S ← empty sequence
while ¬A.isEmpty() ∧ ¬B.isEmpty()

if A.first().element() < B.first().element()
S.insertLast(A.remove(A.first()))

else
S.insertLast(B.remove(B.first()))

while ¬A.isEmpty()
S.insertLast(A.remove(A.first()))

while ¬B.isEmpty()
S.insertLast(B.remove(B.first()))

return S

The conquer step of
merge-sort consists
of merging two
sorted sequences A
and B into a sorted
sequence S
containing the union
of the elements of A
and B
Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes
O(n) time

Merge Sort 6

Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree

each node represents a recursive call of merge-sort and stores
unsorted sequence before the execution and its partition
sorted sequence at the end of the execution

the root is the initial call
the leaves are calls on subsequences of size 0 or 1

7 2  9 4 → 2 4 7 9

7  2 → 2 7 9  4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

Merge Sort 7

Execution Example
Partition

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Merge Sort 8

Execution Example (cont.)
Recursive call, partition

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

Merge Sort 9

Execution Example (cont.)
Recursive call, partition

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Merge Sort 10

Execution Example (cont.)
Recursive call, base case

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

Merge Sort 11

Execution Example (cont.)

Recursive call, base case

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

1 → 1

Merge Sort 12

Execution Example (cont.)
Merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

1 → 1

Merge Sort 13

Execution Example (cont.)
Recursive call, …, base case, merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 3 → 3 8 → 8 6 → 6

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

9 → 9 4 → 4 1 → 1

Merge Sort 14

Execution Example (cont.)
Merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

1 → 1

Merge Sort 15

Execution Example (cont.)

Recursive call, …, merge, merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

1 → 1

Merge Sort 16

Execution Example (cont.)
Merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

1 → 1

Merge Sort 17

Analysis of Merge-Sort
The height h of the merge-sort tree is O(log n)

at each recursive call we divide in half the sequence,

The overall amount or work done at the nodes of depth i is O(n)
we partition and merge 2i sequences of size n/2i

we make 2i+1 recursive calls

Thus, the total running time of merge-sort is O(n log n)

size#seqsdepth

………

n/2i2ii

n/221

n10

Merge Sort 18

Summary of Sorting Algorithms

fast
sequential data access
for huge data sets (> 1M)

O(n log n)merge-sort

fast
in-place
for large data sets (1K — 1M)

O(n log n)heap-sort

O(n2)

O(n2)

Time

insertion-sort

selection-sort

Algorithm Notes

slow
in-place
for small data sets (< 1K)

slow
in-place
for small data sets (< 1K)

	Merge Sort
	Outline and Reading
	Divide-and-Conquer
	Merge-Sort
	Merging Two Sorted Sequences
	Merge-Sort Tree
	Execution Example
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Analysis of Merge-Sort
	Summary of Sorting Algorithms

