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Dictionary ADT (§8.1.1)
The dictionary ADT models a 
searchable collection of key-
element items
The main operations of a 
dictionary are searching, 
inserting, and deleting items
Multiple items with the same 
key are allowed
Applications:

address book
credit card authorization
mapping host names (e.g., 
cs16.net) to internet addresses 
(e.g., 128.148.34.101)

Dictionary ADT methods:
find(k): if the dictionary has 
an item with key k, returns 
the position of this element, 
else, returns a null position. 
insertItem(k, o): inserts item 
(k, o) into the dictionary
removeElement(k): if the 
dictionary has an item with 
key k, removes it from the 
dictionary and returns its 
element.  An error occurs if 
there is no such element.
size(), isEmpty()
keys(), Elements()
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Log File (§8.1.2)
A log file is a dictionary implemented by means of an unsorted 
sequence

We store the items of the dictionary in a sequence (based on a 
doubly-linked lists or a circular array), in arbitrary order

Performance:
insertItem takes O(1) time since we can insert the new item at the 
beginning or at the end of the sequence
find and removeElement take O(n) time since in the worst case 
(the item is not found) we traverse the entire sequence to look for 
an item with the given key

The log file is effective only for dictionaries of small size or for 
dictionaries on which insertions are the most common 
operations, while searches and removals are rarely performed 
(e.g., historical record of logins to a workstation)
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Hash Functions and 
Hash Tables (§8.2) 

A hash function h maps keys of a given type to 
integers in a fixed interval [0, N − 1]
Example:

h(x) = x mod N
is a hash function for integer keys
The integer h(x) is called the hash value of key x

A hash table for a given key type consists of
Hash function h
Array (called table) of size N

When implementing a dictionary with a hash table, 
the goal is to store item (k, o) at index i = h(k)
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Example

We design a hash table for 
a dictionary storing items 
(SSN, Name), where SSN 
(social security number) is a 
nine-digit positive integer
Our hash table uses an 
array of size N = 10,000 and 
the hash function
h(x) = last four digits of x
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Hash Functions (§8.2.2)

A hash function is 
usually specified as the 
composition of two 
functions:
Hash code map:

h1: keys → integers
Compression map:

h2: integers → [0, N − 1]

The hash code map is 
applied first, and the 
compression map is 
applied next on the 
result, i.e., 

h(x) = h2(h1(x))
The goal of the hash 
function is to  
“disperse” the keys in 
an apparently random 
way
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Hash Code Maps (§8.2.3)
Memory address:

We reinterpret the memory 
address of the key object as 
an integer 
Good in general, except for 
numeric and string keys

Integer cast:
We reinterpret the bits of the 
key as an integer
Suitable for keys of length 
less than or equal to the 
number of bits of the integer 
type (e.g., char, short, int 
and float on many machines)

Component sum:
We partition the bits of 
the key into components 
of fixed length (e.g., 16 
or 32 bits) and we sum 
the components 
(ignoring overflows)
Suitable for numeric keys 
of fixed length greater 
than or equal to the 
number of bits of the 
integer type (e.g., long 
and double on many 
machines)
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Hash Code Maps (cont.)
Polynomial accumulation:

We partition the bits of the 
key into a sequence of 
components of fixed length 
(e.g., 8, 16 or 32 bits)

a0 a1 … an−1

We evaluate the polynomial
p(z) = a0 + a1 z + a2 z2 + … 

… + an−1zn−1

at a fixed value z, ignoring 
overflows
Especially suitable for strings 
(e.g., the choice z = 33 gives 
at most 6 collisions on a set 
of 50,000 English words)

Polynomial p(z) can be 
evaluated in O(n) time 
using Horner’s rule:

The following 
polynomials are 
successively computed, 
each from the previous 
one in O(1) time

p0(z) = an−1

pi (z) = an−i−1 + zpi−1(z)
(i = 1, 2, …, n −1)

We have p(z) = pn−1(z) 
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Compression 
Maps (§8.2.4)

Division:
h2 (y) = y mod N
The size N of the 
hash table is usually 
chosen to be a prime 
The reason has to do 
with number theory 
and is beyond the 
scope of this course

Multiply, Add and 
Divide (MAD):

h2 (y) = (ay + b) mod N
a and b are 
nonnegative integers 
such that

a mod N ≠ 0
Otherwise, every 
integer would map to 
the same value b
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Collision Handling 
(§8.2.5)

Collisions occur when 
different elements are 
mapped to the same 
cell
Chaining: let each 
cell in the table point 
to a linked list of 
elements that map 
there

Chaining is simple, 
but requires 
additional memory 
outside the table
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Linear Probing
Open addressing: the 
colliding item is placed in a 
different cell of the table
Linear probing handles 
collisions by placing the 
colliding item in the next 
(circularly) available table cell
Each table cell inspected is 
referred to as a “probe”
Colliding items lump together, 
causing future collisions to 
cause a longer sequence of 
probes

Example:
h(x) = x mod 13
Insert keys 18, 41, 
22, 44, 59, 32, 31, 
73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12
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Search with Linear Probing
Algorithm find(k)

i ← h(k)
p ← 0
repeat

c ← A[i]
if c = ∅

return Position(null)
else if c.key () = k

return Position(c) 
else

i ← (i + 1) mod N
p ← p + 1

until p = N
return Position(null)

Consider a hash table A
that uses linear probing
find(k)

We start at cell h(k) 
We probe consecutive 
locations until one of the 
following occurs

An item with key k is 
found, or
An empty cell is found, 
or
N cells have been 
unsuccessfully probed 
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Updates with Linear Probing
To handle insertions and 
deletions, we introduce a 
special object, called 
AVAILABLE, which replaces 
deleted elements
removeElement(k)

We search for an item with 
key k
If such an item (k, o) is 
found, we replace it with the 
special item AVAILABLE
and we return the position of 
this item
Else, we return a null 
position

insertItem(k, o)
We throw an exception 
if the table is full
We start at cell h(k) 
We probe consecutive 
cells until one of the 
following occurs

A cell i is found that is 
either empty or stores 
AVAILABLE, or
N cells have been 
unsuccessfully probed

We store item (k, o) in 
cell i
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Double Hashing
Double hashing uses a 
secondary hash function 
d(k) and handles 
collisions by placing an 
item in the first available 
cell of the series

(i + jd(k)) mod N
for j = 0,  1, … , N − 1
The secondary hash 
function d(k) cannot have 
zero values
The table size N must be 
a prime to allow probing 
of all the cells

Common choice of 
compression map for the 
secondary hash function: 

d2(k) = q − k mod q
where

q < N
q is a prime

The possible values for 
d2(k) are

1, 2, … , q
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Example of Double Hashing
k h (k ) d (k ) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

Consider a hash 
table storing integer 
keys that handles 
collision with double 
hashing

N = 13
h(k) = k mod 13
d(k) = 7 − k mod 7

Insert keys 18, 41, 
22, 44, 59, 32, 31, 
73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
1 120 1 2 3 4 5 6 7 8 9 10 1
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Performance of 
Hashing

In the worst case, searches, 
insertions and removals on a 
hash table take O(n) time
The worst case occurs when 
all the keys inserted into the 
dictionary collide
The load factor α = n/N 
affects the performance of a 
hash table
Assuming that the hash 
values are like random 
numbers, it can be shown 
that the expected number of 
probes for an insertion with 
open addressing is

1 / (1 − α)

The expected running 
time of all the dictionary 
ADT operations in a 
hash table is O(1)
In practice, hashing is 
very fast provided the 
load factor is not close 
to 100%
Applications of hash 
tables:

small databases
compilers
browser caches
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Universal Hashing 

A family of hash functions 
is universal if, for any 
0<i,j<M-1, 

Pr(h(j)=h(k)) < 1/N.
Choose p as a prime 
between M and 2M.
Randomly select 0<a<p 
and 0<b<p, and define 
h(k)=(ak+b mod p) mod N

Theorem: The set of 
all functions, h, as 
defined here, is 
universal.
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Proof of Universality (Part 1)
Let f(k) = ak+b mod p
Let g(k) = k mod N
So h(k) = g(f(k)).
f causes no collisions:

Let f(k) = f(j).
Suppose k<j. Then
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So a(j-k) is a multiple of p
But both are less than p
So a(j-k) = 0. I.e., j=k. 
(contradiction)
Thus, f causes no collisions.
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Proof of Universality (Part 2)
If f causes no collisions, only g can make h cause collisions. 
Fix a number x. Of the p integers y=f(k), different from x, the number 
such that g(y)=g(x) is at most 
Since there are p choices for x, the number of h’s that will cause a 
collision between j and k is at most

There are p(p-1) functions h. So probability of collision is at most

Therefore, the set of possible h functions is universal.
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