
Elementary Data
Structures

Stacks, Queues, & Lists
Amortized analysis
Trees

Elementary Data Structures 2

The Stack ADT (§4.2.1)
The Stack ADT stores
arbitrary objects
Insertions and deletions
follow the last-in first-out
scheme
Think of a spring-loaded
plate dispenser
Main stack operations:

push(Object o): inserts
element o
pop(): removes and returns
the last inserted element

Auxiliary stack
operations:

top(): returns the last
inserted element without
removing it
size(): returns the
number of elements
stored
isEmpty(): a Boolean
value indicating whether
no elements are stored

Elementary Data Structures 3

Applications of Stacks

Direct applications
Page-visited history in a Web browser
Undo sequence in a text editor
Chain of method calls in the Java Virtual
Machine or C++ runtime environment

Indirect applications
Auxiliary data structure for algorithms
Component of other data structures

Elementary Data Structures 4

Array-based Stack (§4.2.2)
Algorithm pop():

if isEmpty() then
throw EmptyStackException

else
t ← t − 1
return S[t + 1]

A simple way of
implementing the
Stack ADT uses an
array
We add elements
from left to right
A variable t keeps
track of the index of
the top element
(size is t+1)

S
0 1 2 t

…

Algorithm push(o)
if t = S.length − 1 then

throw FullStackException
else
t ← t + 1
S[t] ← o

Elementary Data Structures 5

Growable Array-based
Stack

In a push operation, when
the array is full, instead of
throwing an exception, we
can replace the array with
a larger one
How large should the new
array be?

incremental strategy:
increase the size by a
constant c
doubling strategy: double
the size

Algorithm push(o)
if t = S.length − 1 then

A ← new array of
size …

for i ← 0 to t do
A[i] ← S[i]
S ← A

t ← t + 1
S[t] ← o

Elementary Data Structures 6

Comparison of the
Strategies

We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
push operations
We assume that we start with an empty
stack represented by an array of size 1
We call amortized time of a push operation
the average time taken by a push over the
series of operations, i.e., T(n)/n

Elementary Data Structures 7

Analysis of the
Incremental Strategy

We replace the array k = n/c times
The total time T(n) of a series of n push
operations is proportional to

n + c + 2c + 3c + 4c + … + kc =
n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2
Since c is a constant, T(n) is O(n + k2), i.e.,
O(n2)
The amortized time of a push operation is O(n)

Elementary Data Structures 8

Direct Analysis of the
Doubling Strategy

We replace the array k = log2 n
times
The total time T(n) of a series
of n push operations is
proportional to

n + 1 + 2 + 4 + 8 + …+ 2k =
n + 2k + 1 −1 = 2n −1

T(n) is O(n)
The amortized time of a push
operation is O(1)

geometric series

1

2

1
4

8

Elementary Data Structures 9

Accounting Method Analysis
of the Doubling Strategy

The accounting method determines the amortized
running time with a system of credits and debits
We view a computer as a coin-operated device requiring
1 cyber-dollar for a constant amount of computing.

We set up a scheme for charging operations. This
is known as an amortization scheme.
The scheme must give us always enough money to
pay for the actual cost of the operation.
The total cost of the series of operations is no more
than the total amount charged.

(amortized time) ≤ (total $ charged) / (# operations)

Elementary Data Structures 10

Amortization Scheme for
the Doubling Strategy

Consider again the k phases, where each phase consisting of twice
as many pushes as the one before.
At the end of a phase we must have saved enough to pay for the
array-growing push of the next phase.
At the end of phase i we want to have saved i cyber-dollars, to pay
for the array growth for the beginning of the next phase.

0 2 4 5 6 731

$ $ $ $
$ $ $ $

0 2 4 5 6 7 8 9 113 10 12 13 14 151

$
$

• We charge $3 for a push. The $2 saved for a regular push are
“stored” in the second half of the array. Thus, we will have
2(i/2)=i cyber-dollars saved at then end of phase i.
• Therefore, each push runs in O(1) amortized time; n pushes run
in O(n) time.

Elementary Data Structures 11

The Queue ADT (§4.3.1)
The Queue ADT stores
arbitrary objects
Insertions and deletions follow
the first-in first-out scheme
Insertions are at the rear of
the queue and removals are
at the front of the queue
Main queue operations:

enqueue(object o): inserts
element o at the end of the
queue
dequeue(): removes and
returns the element at the
front of the queue

Auxiliary queue operations:
front(): returns the element
at the front without removing
it
size(): returns the number of
elements stored
isEmpty(): returns a Boolean
value indicating whether no
elements are stored

Exceptions
Attempting the execution of
dequeue or front on an
empty queue throws an
EmptyQueueException

Elementary Data Structures 12

Applications of Queues

Direct applications
Waiting lines
Access to shared resources (e.g., printer)
Multiprogramming

Indirect applications
Auxiliary data structure for algorithms
Component of other data structures

Elementary Data Structures 13

Singly Linked List
A singly linked list is a
concrete data structure
consisting of a sequence
of nodes
Each node stores

element
link to the next node

next

elem node

A

∅

B C D

Elementary Data Structures 14

Queue with a Singly Linked List
We can implement a queue with a singly linked list

The front element is stored at the first node
The rear element is stored at the last node

The space used is O(n) and each operation of the
Queue ADT takes O(1) time

f

r

∅

nodes

elements

Elementary Data Structures 15

List ADT (§5.2.2)

The List ADT models a
sequence of positions
storing arbitrary objects
It allows for insertion
and removal in the
“middle”
Query methods:

isFirst(p), isLast(p)

Accessor methods:
first(), last()
before(p), after(p)

Update methods:
replaceElement(p, o),
swapElements(p, q)
insertBefore(p, o),
insertAfter(p, o),
insertFirst(o),
insertLast(o)
remove(p)

Elementary Data Structures 16

Doubly Linked List
prev next

elem node

A doubly linked list provides a natural
implementation of the List ADT
Nodes implement Position and store:

element
link to the previous node
link to the next node

Special trailer and header nodes

nodes/positions

elements

trailerheader

Elementary Data Structures 17

Trees (§6.1)
In computer science, a
tree is an abstract model
of a hierarchical
structure
A tree consists of nodes
with a parent-child
relation
Applications:

Organization charts
File systems
Programming
environments

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

Elementary Data Structures 18

Tree ADT (§6.1.2)
We use positions to abstract
nodes
Generic methods:

integer size()
boolean isEmpty()
objectIterator elements()
positionIterator positions()

Accessor methods:
position root()
position parent(p)
positionIterator children(p)

Query methods:
boolean isInternal(p)
boolean isExternal(p)
boolean isRoot(p)

Update methods:
swapElements(p, q)
object replaceElement(p, o)

Additional update methods
may be defined by data
structures implementing the
Tree ADT

Elementary Data Structures 19

Preorder Traversal (§6.2.3)
A traversal visits the nodes of a
tree in a systematic manner
In a preorder traversal, a node is
visited before its descendants
Application: print a structured
document

Algorithm preOrder(v)
visit(v)
for each child w of v

preorder (w)

1
Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity

2 5 9

6 7 83 4
2.3 Bank
Robbery

Elementary Data Structures 20

Postorder Traversal (§6.2.4)
In a postorder traversal, a
node is visited after its
descendants
Application: compute space
used by files in a directory and
its subdirectories

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)

9
cs16/

todo.txt
1Khomeworks/ programs/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

3 7
8

64 51 2
Robot.java

20K

Elementary Data Structures 21

Amortized Analysis of
Tree Traversal

Time taken in preorder or postorder traversal
of an n-node tree is proportional to the sum,
taken over each node v in the tree, of the
time needed for the recursive call for v.

The call for v costs $(cv + 1), where cv is the
number of children of v
For the call for v, charge one cyber-dollar to v and
charge one cyber-dollar to each child of v.
Each node (except the root) gets charged twice:
once for its own call and once for its parent’s call.
Therefore, traversal time is O(n).

Elementary Data Structures 22

Binary Trees (§6.3)
A binary tree is a tree with the
following properties:

Each internal node has two
children
The children of a node are an
ordered pair

We call the children of an internal
node left child and right child
Alternative recursive definition: a
binary tree is either

a tree consisting of a single node,
or
a tree whose root has an ordered
pair of children, each of which is a
binary tree

Applications:
arithmetic expressions
decision processes
searching

A

B C

D E F G

H I

Elementary Data Structures 23

Arithmetic Expression Tree
Binary tree associated with an arithmetic expression

internal nodes: operators
external nodes: operands

Example: arithmetic expression tree for the
expression (2 × (a − 1) + (3 × b))

+

××

−2

a 1

3 b

Elementary Data Structures 24

Decision Tree
Binary tree associated with a decision process

internal nodes: questions with yes/no answer
external nodes: decisions

Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks In ‘N Out Antoine's

NoYes

Yes No Yes No

Denny’s

Elementary Data Structures 25

Properties of Binary Trees
Notation
n number of nodes
e number of

external nodes
i number of internal

nodes
h height

Properties:
e = i + 1
n = 2e − 1
h ≤ i
h ≤ (n − 1)/2
e ≤ 2h

h ≥ log2 e
h ≥ log2 (n + 1) − 1

Elementary Data Structures 26

Inorder Traversal
In an inorder traversal a
node is visited after its left
subtree and before its right
subtree
Application: draw a binary
tree

x(v) = inorder rank of v
y(v) = depth of v

Algorithm inOrder(v)
if isInternal (v)

inOrder (leftChild (v))
visit(v)
if isInternal (v)

inOrder (rightChild (v))

3

1

2

5

6

7 9

8

4

Elementary Data Structures 27

Euler Tour Traversal
Generic traversal of a binary tree
Includes a special cases the preorder, postorder and inorder traversals
Walk around the tree and visit each node three times:

on the left (preorder)
from below (inorder)
on the right (postorder)

+

×

−2

5 1

3 2

L
B

R×

Elementary Data Structures 28

Printing Arithmetic Expressions
Algorithm printExpression(v)

if isInternal (v)
print(“(’’)
inOrder (leftChild (v))

print(v.element ())
if isInternal (v)

inOrder (rightChild (v))
print (“)’’)

Specialization of an inorder
traversal

print operand or operator
when visiting node
print “(” before traversing left
subtree
print “)” after traversing right
subtree

+

××

−2

a 1

3 b
((2 × (a − 1)) + (3 × b))

Elementary Data Structures 29

Linked Data Structure for
Representing Trees (§6.4.3)

A node is represented by
an object storing

Element
Parent node
Sequence of children
nodes

Node objects implement
the Position ADT

∅

∅ ∅

A D F

∅

C

∅

E

B

B

DA

C

F

E

Elementary Data Structures 30

Linked Data Structure for
Binary Trees (§6.4.2)

A node is represented
by an object storing

Element
Parent node
Left child node
Right child node

Node objects implement
the Position ADT

∅ ∅

∅ ∅ ∅ ∅

B

A D

C E

∅

B

A D

C E

Elementary Data Structures 31

Array-Based Representation of
Binary Trees (§6.4.1)

nodes are stored in an array

…

let rank(node) be defined as follows:
rank(root) = 1
if node is the left child of parent(node),

rank(node) = 2*rank(parent(node))
if node is the right child of parent(node),

rank(node) = 2*rank(parent(node))+1

1

2 3

64 5

10 11

A

HG

FE

D

C

B

J

7

	Elementary Data Structures
	The Stack ADT (§4.2.1)
	Applications of Stacks
	Array-based Stack (§4.2.2)
	Growable Array-based Stack
	Comparison of the Strategies
	Analysis of the Incremental Strategy
	Direct Analysis of the Doubling Strategy
	Amortization Scheme for the Doubling Strategy
	The Queue ADT (§4.3.1)
	Applications of Queues
	Singly Linked List
	Queue with a Singly Linked List
	List ADT (§5.2.2)
	Doubly Linked List
	Trees (§6.1)
	Tree ADT (§6.1.2)
	Preorder Traversal (§6.2.3)
	Postorder Traversal (§6.2.4)
	Amortized Analysis of Tree Traversal
	Binary Trees (§6.3)
	Arithmetic Expression Tree
	Decision Tree
	Properties of Binary Trees
	Inorder Traversal
	Euler Tour Traversal
	Printing Arithmetic Expressions
	Linked Data Structure for Representing Trees (§6.4.3)
	Linked Data Structure for Binary Trees (§6.4.2)
	Array-Based Representation of Binary Trees (§6.4.1)

