Elementary Data Structures

Stacks, Queues, & Lists

Amortized analysis

Trees

The Stack ADT (§4.2.1)

- The Stack ADT stores arbitrary objects
- Insertions and deletions follow the last-in first-out scheme
- Think of a spring-loaded plate dispenser
- Main stack operations:
 - push(Object o): inserts element o
 - pop(): removes and returns the last inserted element

- Auxiliary stack operations:
 - top(): returns the last inserted element without removing it
 - size(): returns the number of elements stored
 - isEmpty(): a Boolean value indicating whether no elements are stored

Applications of Stacks

Direct applications

- Page-visited history in a Web browser
- Undo sequence in a text editor
- Chain of method calls in the Java Virtual Machine or C++ runtime environment
- Indirect applications
 - Auxiliary data structure for algorithms
 - Component of other data structures

Array-based Stack (§4.2.2)

- A simple way of implementing the Stack ADT uses an array
- We add elements from left to right
- A variable t keeps track of the index of the top element (size is t+1)

S

Algorithm *pop*(): if *isEmpty()* then throw EmptyStackException else $t \leftarrow t - 1$ return S[t+1]Algorithm *push(o)* if t = S.length - 1 then throw FullStackException else $t \leftarrow t + 1$ $S[t] \leftarrow o$

Growable Array-based Stack

In a push operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one

- How large should the new array be?
 - incremental strategy: increase the size by a constant c
 - doubling strategy: double the size

Algorithm push(o)if t = S.length - 1 then $A \leftarrow$ new array of size ... for $i \leftarrow 0$ to t do

 $A[i] \leftarrow S[i]$ $S \leftarrow A$

$$t \leftarrow t + 1$$
$$S[t] \leftarrow o$$

Comparison of the Strategies

We compare the incremental strategy and the doubling strategy by analyzing the total time *T(n)* needed to perform a series of *n* push operations

We assume that we start with an empty stack represented by an array of size 1

We call **amortized time** of a push operation the average time taken by a push over the series of operations, i.e., T(n)/n

Analysis of the Incremental Strategy

We replace the array k = n/c times
 The total time T(n) of a series of n push operations is proportional to

n + c + 2c + 3c + 4c + ... + kc =

$$n + c(1 + 2 + 3 + ... + k) =$$

n + ck(k+1)/2

Elementary Data Structures

Accounting Method Analysis of the Doubling Strategy

- The accounting method determines the amortized running time with a system of credits and debits
- We view a computer as a coin-operated device requiring 1 cyber-dollar for a constant amount of computing.
 - We set up a scheme for charging operations. This is known as an **amortization scheme**.
 - The scheme must give us always enough money to pay for the actual cost of the operation.
 - The total cost of the series of operations is no more than the total amount charged.

♦ (amortized time) ≤ (total \$ charged) / (# operations)

Amortization Scheme for the Doubling Strategy

- Consider again the k phases, where each phase consisting of twice as many pushes as the one before.
- At the end of a phase we must have saved enough to pay for the array-growing push of the next phase.
- At the end of phase *i* we want to have saved *i* cyber-dollars, to pay for the array growth for the beginning of the next phase.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

We charge \$3 for a push. The \$2 saved for a regular push are "stored" in the second half of the array. Thus, we will have 2(*i*/2)=*i* cyber-dollars saved at then end of phase *i*.
Therefore, each push runs in *O*(1) amortized time; *n* pushes run in *O*(*n*) time.

The Queue ADT (§4.3.1)

- The Queue ADT stores arbitrary objects
- Insertions and deletions follow the first-in first-out scheme
- Insertions are at the rear of the queue and removals are at the front of the queue
- Main queue operations:
 - enqueue(object o): inserts element o at the end of the queue
 - dequeue(): removes and returns the element at the front of the queue

Auxiliary queue operations:

- front(): returns the element at the front without removing it
- size(): returns the number of elements stored
- isEmpty(): returns a Boolean value indicating whether no elements are stored

Exceptions

 Attempting the execution of dequeue or front on an empty queue throws an EmptyQueueException

Applications of Queues

- Direct applications
 - Waiting lines
 - Access to shared resources (e.g., printer)
 - Multiprogramming
- Indirect applications
 - Auxiliary data structure for algorithms
 - Component of other data structures

Singly Linked List

- A singly linked list is a concrete data structure consisting of a sequence of nodes
- Each node stores
 - element
 - link to the next node

Queue with a Singly Linked List

- We can implement a queue with a singly linked list
 - The front element is stored at the first node
 - The rear element is stored at the last node
- The space used is O(n) and each operation of the Queue ADT takes O(1) time

Elementary Data Structures

List ADT (§5.2.2)

The List ADT models a sequence of **positions** storing arbitrary objects

It allows for insertion and removal in the "middle"

Query methods:

isFirst(p), isLast(p)

Accessor methods: first(), last() before(p), after(p) Update methods: replaceElement(p, o), swapElements(p, q)

- insertBefore(p, o), insertAfter(p, o),
- insertFirst(o), insertLast(o)
- remove(p)

Doubly Linked List

- A doubly linked list provides a natural implementation of the List ADT
- Nodes implement Position and store:
 - element
 - link to the previous node
 - link to the next node
- Special trailer and header nodes

Elementary Data Structures

Trees (§6.1)

- In computer science, a tree is an abstract model of a hierarchical structure
- A tree consists of nodes with a parent-child relation
- Applications:
 - Organization charts
 - File systems
 - Programming environments

Tree ADT (§6.1.2)

- We use positions to abstract nodes
- Generic methods:
 - integer size()
 - boolean isEmpty()
 - objectIterator elements()
 - positionIterator positions()
- Accessor methods:
 - position root()
 - position parent(p)
 - positionIterator children(p)

- Query methods:
 - boolean isInternal(p)
 - boolean isExternal(p)
 - boolean isRoot(p)
- Update methods:
 - swapElements(p, q)
 - object replaceElement(p, o)
- Additional update methods may be defined by data structures implementing the Tree ADT

Preorder Traversal (§6.2.3)

Postorder Traversal (§6.2.4)

Amortized Analysis of Tree Traversal

Time taken in preorder or postorder traversal of an n-node tree is proportional to the sum, taken over each node v in the tree, of the time needed for the recursive call for v.

- The call for v costs $(c_v + 1)$, where c_v is the number of children of v
- For the call for v, charge one cyber-dollar to v and charge one cyber-dollar to each child of v.
- Each node (except the root) gets charged twice: once for its own call and once for its parent's call.
- Therefore, traversal time is O(n).

Binary Trees (§6.3)

- A binary tree is a tree with the following properties:
 - Each internal node has two children
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

Arithmetic Expression Tree

Sinary tree associated with an arithmetic expression

- internal nodes: operators
- external nodes: operands

• Example: arithmetic expression tree for the expression $(2 \times (a - 1) + (3 \times b))$

Decision Tree

Properties of Binary Trees

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v
 - y(v) = depth of v

Algorithm inOrder(v) if isInternal (v) inOrder (leftChild (v)) visit(v) if isInternal (v) inOrder (rightChild (v))

Elementary Data Structures

8

9

6

5

4

3

Euler Tour Traversal

- Generic traversal of a binary tree
- Includes a special cases the preorder, postorder and inorder traversals
 Walk around the tree and visit each node three times:
 - on the left (preorder)
 - from below (inorder)
 - on the right (postorder)

Elementary Data Structures

Printing Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node

X

a

2

- print "(" before traversing left subtree
- print ")" after traversing right subtree

X

b

3

Algorithm printExpression(v) if isInternal (v) print(``('') inOrder (leftChild (v)) print(v.element ()) if isInternal (v) inOrder (rightChild (v)) print (``)'')

$((2 \times (a - 1)) + (3 \times b))$

Elementary Data Structures

Linked Data Structure for Representing Trees (§6.4.3)

Linked Data Structure for Binary Trees (§6.4.2)

Array-Based Representation of Binary Trees (§6.4.1)

nodes are stored in an array

let rank(node) be defined as follows:

. . .

- rank(root) = 1
- if node is the left child of parent(node), rank(node) = 2*rank(parent(node))
- if node is the right child of parent(node), rank(node) = 2*rank(parent(node))+1

3

D

Α

5

F

6

11

Η

2

4

E

10

B