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The Stack ADT (§4.2.1)
The Stack ADT stores 
arbitrary objects
Insertions and deletions 
follow the last-in first-out 
scheme
Think of a spring-loaded 
plate dispenser
Main stack operations:

push(Object o): inserts 
element o
pop(): removes and returns 
the last inserted element

Auxiliary stack 
operations:

top(): returns the last 
inserted element without 
removing it
size(): returns the 
number of elements 
stored
isEmpty(): a Boolean 
value indicating whether 
no elements are stored
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Applications of Stacks

Direct applications
Page-visited history in a Web browser
Undo sequence in a text editor
Chain of method calls in the Java Virtual 
Machine or C++ runtime environment

Indirect applications
Auxiliary data structure for algorithms
Component of other data structures
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Array-based Stack (§4.2.2)
Algorithm pop():

if isEmpty() then
throw EmptyStackException

else 
t ← t − 1
return S[t + 1]

A simple way of 
implementing the 
Stack ADT uses an 
array
We add elements 
from left to right
A variable t keeps 
track of the index of 
the top element 
(size is t+1)

S
0 1 2 t

…

Algorithm push(o)
if t = S.length − 1 then

throw FullStackException
else 
t ← t + 1
S[t] ← o
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Growable Array-based 
Stack

In a push operation, when 
the array is full, instead of 
throwing an exception, we 
can replace the array with 
a larger one
How large should the new 
array be?

incremental strategy: 
increase the size by a 
constant c
doubling strategy: double 
the size

Algorithm push(o)
if t = S.length − 1 then

A ← new array of
size …

for i ← 0 to t do
A[i] ← S[i]
S ← A

t ← t + 1
S[t] ← o
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Comparison of the 
Strategies

We compare the incremental strategy and 
the doubling strategy by analyzing the total 
time T(n) needed to perform a series of n
push operations
We assume that we start with an empty 
stack represented by an array of size 1
We call amortized time of a push operation 
the average time taken by a push over the 
series of operations, i.e.,  T(n)/n
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Analysis of the 
Incremental Strategy

We replace the array k = n/c times
The total time T(n) of a series of n push 
operations is proportional to

n + c + 2c + 3c + 4c + … + kc =
n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2
Since c is a constant, T(n) is O(n + k2), i.e., 
O(n2)
The amortized time of a push operation is O(n)
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Direct Analysis of the 
Doubling Strategy

We replace the array k = log2 n 
times
The total time T(n) of a series 
of n push operations is 
proportional to

n + 1 + 2 + 4 + 8 + …+ 2k =
n + 2k + 1 −1 = 2n −1

T(n) is O(n)
The amortized time of a push 
operation is O(1)

geometric series

1

2

1
4

8
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Accounting Method Analysis 
of the Doubling Strategy

The accounting method determines the amortized 
running time with a system of credits and debits
We view a computer as a coin-operated device requiring 
1 cyber-dollar for a constant amount of computing.

We set up a scheme for charging operations. This 
is known as an amortization scheme.
The scheme must give us always enough money to 
pay for the actual cost of the operation.
The total cost of the series of operations is no more 
than the total amount charged.

(amortized time) ≤ (total $ charged) / (# operations)
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Amortization Scheme for 
the Doubling Strategy

Consider again the k phases, where each phase consisting of twice 
as many pushes as the one before.
At the end of a phase we must have saved enough to pay for the 
array-growing push of the next phase.
At the end of phase i we want to have saved i cyber-dollars, to pay 
for the array growth for the beginning of the next phase.

0 2 4 5 6 731

$ $ $ $
$ $ $ $

0 2 4 5 6 7 8 9 113 10 12 13 14 151

$
$

• We charge $3 for a push. The $2 saved for a regular push are 
“stored” in the second half of the array. Thus, we will have 
2(i/2)=i cyber-dollars saved at then end of phase i.
• Therefore, each push runs in O(1) amortized time; n pushes run 
in O(n) time.
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The Queue ADT (§4.3.1)
The Queue ADT stores 
arbitrary objects
Insertions and deletions follow 
the first-in first-out scheme
Insertions are at the rear of 
the queue and removals are 
at the front of the queue
Main queue operations:

enqueue(object o): inserts 
element o at the end of the 
queue
dequeue(): removes and 
returns the element at the 
front of the queue

Auxiliary queue operations:
front(): returns the element 
at the front without removing 
it
size(): returns the number of 
elements stored
isEmpty(): returns a Boolean 
value indicating whether no 
elements are stored

Exceptions
Attempting the execution of 
dequeue or front on an 
empty queue throws an 
EmptyQueueException
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Applications of Queues

Direct applications
Waiting lines
Access to shared resources (e.g., printer)
Multiprogramming

Indirect applications
Auxiliary data structure for algorithms
Component of other data structures



Elementary Data Structures 13

Singly Linked List
A singly linked list is a 
concrete data structure 
consisting of a sequence 
of nodes
Each node stores

element
link to the next node

next

elem node

A

∅

B C D
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Queue with a Singly Linked List
We can implement a queue with a singly linked list

The front element is stored at the first node
The rear element is stored at the last node

The space used is O(n) and each operation of the 
Queue ADT takes O(1) time

f

r

∅

nodes

elements
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List ADT (§5.2.2)

The List ADT models a 
sequence of positions
storing arbitrary objects
It allows for insertion 
and removal in the 
“middle” 
Query methods:

isFirst(p), isLast(p)

Accessor methods:
first(), last()
before(p), after(p)

Update methods:
replaceElement(p, o), 
swapElements(p, q) 
insertBefore(p, o), 
insertAfter(p, o),
insertFirst(o), 
insertLast(o)
remove(p)
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Doubly Linked List
prev next

elem node

A doubly linked list provides a natural 
implementation of the List ADT
Nodes implement Position and store:

element
link to the previous node
link to the next node

Special trailer and header nodes

nodes/positions

elements

trailerheader
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Trees (§6.1)
In computer science, a 
tree is an abstract model 
of a hierarchical 
structure
A tree consists of nodes 
with a parent-child 
relation
Applications:

Organization charts
File systems
Programming 
environments

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada
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Tree ADT (§6.1.2)
We use positions to abstract 
nodes
Generic methods:

integer size()
boolean isEmpty()
objectIterator elements()
positionIterator positions()

Accessor methods:
position root()
position parent(p)
positionIterator children(p)

Query methods:
boolean isInternal(p)
boolean isExternal(p)
boolean isRoot(p)

Update methods:
swapElements(p, q)
object replaceElement(p, o)

Additional update methods 
may be defined by data 
structures implementing the 
Tree ADT
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Preorder Traversal (§6.2.3)
A traversal visits the nodes of a 
tree in a systematic manner
In a preorder traversal, a node is 
visited before its descendants 
Application: print a structured 
document

Algorithm preOrder(v)
visit(v)
for each child w of v

preorder (w)

1
Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity

2 5 9

6 7 83 4
2.3 Bank
Robbery
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Postorder Traversal (§6.2.4)
In a postorder traversal, a 
node is visited after its 
descendants
Application: compute space 
used by files in a directory and 
its subdirectories

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)

9
cs16/

todo.txt
1Khomeworks/ programs/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

3 7
8

64 51 2
Robot.java

20K
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Amortized Analysis of 
Tree Traversal

Time taken in preorder or postorder traversal 
of an n-node tree is proportional to the sum, 
taken over each node v in the tree, of the 
time needed for the recursive call for v.

The call for v costs $(cv + 1), where cv is the 
number of children of v
For the call for v, charge one cyber-dollar to v and 
charge one cyber-dollar to each child of v.
Each node (except the root) gets charged twice: 
once for its own call and once for its parent’s call.
Therefore, traversal time is O(n).
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Binary Trees (§6.3)
A binary tree is a tree with the 
following properties:

Each internal node has two 
children
The children of a node are an 
ordered pair

We call the children of an internal 
node left child and right child
Alternative recursive definition: a 
binary tree is either

a tree consisting of a single node, 
or
a tree whose root has an ordered 
pair of children, each of which is a 
binary tree

Applications:
arithmetic expressions
decision processes
searching

A

B C

D E F G

H I
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Arithmetic Expression Tree
Binary tree associated with an arithmetic expression

internal nodes: operators
external nodes: operands

Example: arithmetic expression tree for the 
expression (2 × (a − 1) + (3 × b))

+

××

−2

a 1

3 b



Elementary Data Structures 24

Decision Tree
Binary tree associated with a decision process

internal nodes: questions with yes/no answer
external nodes: decisions

Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks In ‘N Out Antoine's

NoYes

Yes No Yes No

Denny’s
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Properties of Binary Trees
Notation
n number of nodes
e number of 

external nodes
i number of internal 

nodes
h height

Properties:
e = i + 1
n = 2e − 1
h ≤ i
h ≤ (n − 1)/2
e ≤ 2h

h ≥ log2 e
h ≥ log2 (n + 1) − 1
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Inorder Traversal
In an inorder traversal a 
node is visited after its left 
subtree and before its right 
subtree
Application: draw a binary 
tree

x(v) = inorder rank of v
y(v) = depth of v

Algorithm inOrder(v)
if isInternal (v)

inOrder (leftChild (v))
visit(v)
if isInternal (v)

inOrder (rightChild (v))

3

1

2

5

6

7 9

8

4
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Euler Tour Traversal
Generic traversal of a binary tree
Includes a special cases the preorder, postorder and inorder traversals
Walk around the tree and visit each node three times:

on the left (preorder)
from below (inorder)
on the right (postorder)

+

×

−2

5 1

3 2

L
B

R×
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Printing Arithmetic Expressions
Algorithm printExpression(v)

if isInternal (v)
print(“(’’)
inOrder (leftChild (v))

print(v.element ())
if isInternal (v)

inOrder (rightChild (v))
print (“)’’)

Specialization of an inorder 
traversal

print operand or operator 
when visiting node
print “(” before traversing left 
subtree
print “)” after traversing right 
subtree

+

××

−2

a 1

3 b
((2 × (a − 1)) + (3 × b))
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Linked Data Structure for 
Representing Trees (§6.4.3)

A node is represented by 
an object storing

Element
Parent node
Sequence of children 
nodes

Node objects implement 
the Position ADT

∅

∅ ∅

A D F

∅

C

∅
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Linked Data Structure for 
Binary Trees (§6.4.2)

A node is represented 
by an object storing

Element
Parent node
Left child node
Right child node

Node objects implement 
the Position ADT

∅ ∅

∅ ∅ ∅ ∅

B

A D

C E

∅

B

A D

C E
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Array-Based Representation of 
Binary Trees (§6.4.1)

nodes are stored in an array

…

let rank(node) be defined as follows:
rank(root) = 1
if node is the left child of parent(node), 

rank(node) = 2*rank(parent(node))
if node is the right child of parent(node), 

rank(node) = 2*rank(parent(node))+1

1

2 3

64 5

10 11

A
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