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Outline and Reading
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Algorithm
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Weighted Graphs
In a weighted graph, each edge has an associated numerical 
value, called the weight of the edge
Edge weights may represent, distances, costs, etc.
Example:

In a  flight route graph, the weight of an edge represents the 
distance in miles between the endpoint airports
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Shortest Path Problem
Given a weighted graph and two vertices u and v, we want to 
find a path of minimum total weight between u and v.

Length of a path is the sum of the weights of its edges.
Example:

Shortest path between Providence and Honolulu
Applications

Internet packet routing 
Flight reservations
Driving directions
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Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other 
vertices

Example:
Tree of shortest paths from Providence

MIA
DFW

LGA

849

80
2

138717
43

1843

1099
1120

1233
337

142 1205

PVDORD
SFO

2555HNL
LAX



Shortest Paths 6

Dijkstra’s Algorithm
The distance of a vertex 
v from a vertex s is the 
length of a shortest path 
between s and v
Dijkstra’s algorithm 
computes the distances 
of all the vertices from a 
given start vertex s
Assumptions:

the graph is connected
the edges are 
undirected
the edge weights are 
nonnegative

We grow a “cloud” of vertices, 
beginning with s and eventually 
covering all the vertices
We store with each vertex v a 
label d(v) representing the 
distance of v from s in the 
subgraph consisting of the cloud 
and its adjacent vertices
At each step

We add to the cloud the vertex 
u outside the cloud with the 
smallest distance label, d(u)
We update the labels of the 
vertices adjacent to u
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Edge Relaxation
Consider an edge e = (u,z)
such that

u is the vertex most recently 
added to the cloud
z is not in the cloud

The relaxation of edge e 
updates distance d(z) as 
follows:
d(z) ← min{d(z),d(u) + weight(e)}
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Example (cont.)
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Dijkstra’s Algorithm
Algorithm DijkstraDistances(G, s)

Q ← new heap-based priority queue
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
Q.replaceKey(getLocator(z),r)

A priority queue stores 
the vertices outside the 
cloud

Key: distance
Element: vertex

Locator-based methods
insert(k,e) returns a 
locator 
replaceKey(l,k) changes 
the key of an item

We store two labels 
with each vertex:

distance (d(v) label)
locator in priority 
queue
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Analysis
Graph operations

Method incidentEdges is called once for each vertex
Label operations

We set/get the distance and locator labels of vertex z O(deg(z)) times
Setting/getting a label takes O(1) time

Priority queue operations
Each vertex is inserted once into and removed once from the priority 
queue, where each insertion or removal takes O(log n) time
The key of a vertex in the priority queue is modified at most deg(w) 
times, where each key change takes O(log n) time 

Dijkstra’s algorithm runs in O((n + m) log n) time provided the 
graph is represented by the adjacency list structure

Recall that Σv deg(v) = 2m
The running time can also be expressed as O(m log n) since the 
graph is connected
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Extension
Algorithm DijkstraShortestPathsTree(G, s)

…

for all v ∈ G.vertices()
…
setParent(v, ∅)
…

for all e ∈ G.incidentEdges(u)
{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Using the template 
method pattern, we 
can extend Dijkstra’s 
algorithm to return a 
tree of shortest paths 
from the start vertex 
to all other vertices
We store with each 
vertex a third label:

parent edge in the 
shortest path tree

In the edge relaxation 
step, we update the 
parent label
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Why Dijkstra’s Algorithm 
Works

Dijkstra’s algorithm is based on the greedy 
method. It adds vertices by increasing distance.
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Suppose it didn’t find all shortest 
distances. Let F be the first wrong 
vertex the algorithm processed.
When the previous node, D, on the 
true shortest path was considered, 
its distance was correct.
But the edge (D,F) was relaxed at 
that time!
Thus, so long as d(F)>d(D), F’s 
distance cannot be wrong.  That is, 
there is no wrong vertex.
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Why It Doesn’t Work for 
Negative-Weight Edges

If a node with a negative 
incident edge were to be added 
late to the cloud, it could mess 
up distances for vertices already 
in the cloud. 
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Dijkstra’s algorithm is based on the greedy 
method. It adds vertices by increasing distance.

C’s true distance is 1, but 
it is already in the cloud 

with d(C)=5!
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Bellman-Ford Algorithm
Works even with negative-
weight edges
Must assume directed 
edges (for otherwise we 
would have negative-
weight cycles)
Iteration i finds all shortest 
paths that use i edges.
Running time: O(nm).
Can be extended to detect 
a negative-weight cycle if it 
exists 

How?

Algorithm BellmanFord(G, s)
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

for i ← 1 to n-1 do
for each e ∈ G.edges()

{ relax edge e }
u ← G.origin(e)
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
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Bellman-Ford Example
Nodes are labeled with their d(v) values
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DAG-based Algorithm
Algorithm DagDistances(G, s)

for all v ∈ G.vertices()
if v = s

setDistance(v, 0)
else

setDistance(v, ∞)
Perform a topological sort of the vertices
for u ← 1 to n do {in topological order}

for each e ∈ G.outEdges(u)
{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)

Works even with 
negative-weight edges
Uses topological order
Doesn’t use any fancy 
data structures
Is much faster than 
Dijkstra’s algorithm
Running time: O(n+m).
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DAG Example
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All-Pairs Shortest Paths
Find the distance 
between every pair of 
vertices in a weighted 
directed graph G.
We can make n calls to 
Dijkstra’s algorithm (if no 
negative edges), which 
takes O(nmlog n) time.
Likewise, n calls to 
Bellman-Ford would take 
O(n2m) time.
We can achieve O(n3) 
time using dynamic 
programming (similar to 
the Floyd-Warshall 
algorithm).

Algorithm AllPair(G) {assumes vertices 1,…,n}
for all vertex pairs (i,j) 

if i = j
D0[i,i] ← 0

else if (i,j) is an edge in G
D0[i,j] ← weight of edge (i,j)

else
D0[i,j] ← + ∞

for k ← 1 to n do 
for i ← 1 to n do    

for j ← 1 to n do    
Dk[i,j] ← min{Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j]}

return Dn

jUses only vertices
numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(compute weight of this edge)

i

Uses only vertices
numbered 1,…,k-1

k
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