
Shortest Paths 1

Shortest Paths

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

Shortest Paths 2

Outline and Reading
Weighted graphs (§12.1)

Shortest path problem
Shortest path properties

Dijkstra’s algorithm (§12.6.1)
Algorithm
Edge relaxation

The Bellman-Ford algorithm
Shortest paths in DAGs
All-pairs shortest paths

Shortest Paths 3

Weighted Graphs
In a weighted graph, each edge has an associated numerical
value, called the weight of the edge
Edge weights may represent, distances, costs, etc.
Example:

In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

MIA
DFW

LGA

849

80
2

138717
43

1843

1099
1120

1233
337

142 1205

PVDORD
SFO

2555HNL
LAX

Shortest Paths 4

Shortest Path Problem
Given a weighted graph and two vertices u and v, we want to
find a path of minimum total weight between u and v.

Length of a path is the sum of the weights of its edges.
Example:

Shortest path between Providence and Honolulu
Applications

Internet packet routing
Flight reservations
Driving directions

ORD PVD

MIA
DFW

SFO
LGA

849

80
2

138717
43

1843

1099
1120

1233
337

2555

142 1205

HNL
LAX

Shortest Paths 5

Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

MIA
DFW

LGA

849

80
2

138717
43

1843

1099
1120

1233
337

142 1205

PVDORD
SFO

2555HNL
LAX

Shortest Paths 6

Dijkstra’s Algorithm
The distance of a vertex
v from a vertex s is the
length of a shortest path
between s and v
Dijkstra’s algorithm
computes the distances
of all the vertices from a
given start vertex s
Assumptions:

the graph is connected
the edges are
undirected
the edge weights are
nonnegative

We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices
We store with each vertex v a
label d(v) representing the
distance of v from s in the
subgraph consisting of the cloud
and its adjacent vertices
At each step

We add to the cloud the vertex
u outside the cloud with the
smallest distance label, d(u)
We update the labels of the
vertices adjacent to u

Shortest Paths 7

Edge Relaxation
Consider an edge e = (u,z)
such that

u is the vertex most recently
added to the cloud
z is not in the cloud

The relaxation of edge e
updates distance d(z) as
follows:
d(z) ← min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50

10

s
u

d(z) = 60
d(u) = 50

10

s
u

e

e

z

z

Shortest Paths 8

Example
A

0

8

48

7 1
2

CB

∞ ∞
2 5E

D

F

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

C

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

2 4

3 9

C

A
0

28

1

48

7

2 5

2

3 9

31B D B

E F
5 1

Shortest Paths 9

Example (cont.)

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Shortest Paths 10

Dijkstra’s Algorithm
Algorithm DijkstraDistances(G, s)

Q ← new heap-based priority queue
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
Q.replaceKey(getLocator(z),r)

A priority queue stores
the vertices outside the
cloud

Key: distance
Element: vertex

Locator-based methods
insert(k,e) returns a
locator
replaceKey(l,k) changes
the key of an item

We store two labels
with each vertex:

distance (d(v) label)
locator in priority
queue

Shortest Paths 11

Analysis
Graph operations

Method incidentEdges is called once for each vertex
Label operations

We set/get the distance and locator labels of vertex z O(deg(z)) times
Setting/getting a label takes O(1) time

Priority queue operations
Each vertex is inserted once into and removed once from the priority
queue, where each insertion or removal takes O(log n) time
The key of a vertex in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

Dijkstra’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure

Recall that Σv deg(v) = 2m
The running time can also be expressed as O(m log n) since the
graph is connected

Shortest Paths 12

Extension
Algorithm DijkstraShortestPathsTree(G, s)

…

for all v ∈ G.vertices()
…
setParent(v, ∅)
…

for all e ∈ G.incidentEdges(u)
{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Using the template
method pattern, we
can extend Dijkstra’s
algorithm to return a
tree of shortest paths
from the start vertex
to all other vertices
We store with each
vertex a third label:

parent edge in the
shortest path tree

In the edge relaxation
step, we update the
parent label

Shortest Paths 13

Why Dijkstra’s Algorithm
Works

Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Suppose it didn’t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.
When the previous node, D, on the
true shortest path was considered,
its distance was correct.
But the edge (D,F) was relaxed at
that time!
Thus, so long as d(F)>d(D), F’s
distance cannot be wrong. That is,
there is no wrong vertex.

Shortest Paths 14

Why It Doesn’t Work for
Negative-Weight Edges

If a node with a negative
incident edge were to be added
late to the cloud, it could mess
up distances for vertices already
in the cloud.

CB

A

E

D

F

0

457

5 9

48

7 1

2 5

6

0 -8

Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

C’s true distance is 1, but
it is already in the cloud

with d(C)=5!

Shortest Paths 15

Bellman-Ford Algorithm
Works even with negative-
weight edges
Must assume directed
edges (for otherwise we
would have negative-
weight cycles)
Iteration i finds all shortest
paths that use i edges.
Running time: O(nm).
Can be extended to detect
a negative-weight cycle if it
exists

How?

Algorithm BellmanFord(G, s)
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

for i ← 1 to n-1 do
for each e ∈ G.edges()

{ relax edge e }
u ← G.origin(e)
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)

Shortest Paths 16

Bellman-Ford Example
Nodes are labeled with their d(v) values

8

7 1
-2 -2

08

7 1-2

0 4 4

∞∞∞

∞-2
3 9

∞

5∞

4

∞

∞-2
3 9

∞

5

48

∞

-2
08

7 1

8

7 1
-2

0 4

-28

-2
3 9

∞
6

1
4 -1

∞ 59

5 5 -2 -1

3 9

9 54
1-2

Shortest Paths 17

DAG-based Algorithm
Algorithm DagDistances(G, s)

for all v ∈ G.vertices()
if v = s

setDistance(v, 0)
else

setDistance(v, ∞)
Perform a topological sort of the vertices
for u ← 1 to n do {in topological order}

for each e ∈ G.outEdges(u)
{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)

Works even with
negative-weight edges
Uses topological order
Doesn’t use any fancy
data structures
Is much faster than
Dijkstra’s algorithm
Running time: O(n+m).

Shortest Paths 18

-2

DAG Example

0 48

7 1

-5 5

-2

3 9

∞

0

∞

48

7 1

-5 5
3 9

Nodes are labeled with their d(v) values

-2 4

1

1

2 43

1

2 43 8
∞ ∞ ∞ ∞

∞ ∞

4

∞ ∞
6 5 6 5

-2
08

7 1

1

25

8

7 1
-2
2

1
0 4

-28

-5
3

∞
1

6 5

4 -1

∞ 57
9

-25

1-5
3 9

6 5

0

4 43 3
-1

54
7

(two steps)

Shortest Paths 19

All-Pairs Shortest Paths
Find the distance
between every pair of
vertices in a weighted
directed graph G.
We can make n calls to
Dijkstra’s algorithm (if no
negative edges), which
takes O(nmlog n) time.
Likewise, n calls to
Bellman-Ford would take
O(n2m) time.
We can achieve O(n3)
time using dynamic
programming (similar to
the Floyd-Warshall
algorithm).

Algorithm AllPair(G) {assumes vertices 1,…,n}
for all vertex pairs (i,j)

if i = j
D0[i,i] ← 0

else if (i,j) is an edge in G
D0[i,j] ← weight of edge (i,j)

else
D0[i,j] ← + ∞

for k ← 1 to n do
for i ← 1 to n do

for j ← 1 to n do
Dk[i,j] ← min{Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j]}

return Dn

jUses only vertices
numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(compute weight of this edge)

i

Uses only vertices
numbered 1,…,k-1

k

	Shortest Paths
	Outline and Reading
	Weighted Graphs
	Shortest Path Problem
	Shortest Path Properties
	Dijkstra’s Algorithm
	Edge Relaxation
	Example
	Example (cont.)
	Dijkstra’s Algorithm
	Analysis
	Extension
	Why Dijkstra’s Algorithm Works
	Why It Doesn’t Work for Negative-Weight Edges
	Bellman-Ford Algorithm
	Bellman-Ford Example
	DAG-based Algorithm
	DAG Example
	All-Pairs Shortest Paths

