Shortest Paths

Outline and Reading

- Weighted graphs (§12.1)
- Shortest path problem
- Shortest path properties

Dijkstra's algorithm (§12.6.1)

- Algorithm
- Edge relaxation
- The Bellman-Ford algorithm
- Shortest paths in DAGs
- All-pairs shortest paths

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- Example:
- In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Path Problem

- Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between \boldsymbol{u} and \boldsymbol{v}.
- Length of a path is the sum of the weights of its edges.
- Example:
- Shortest path between Providence and Honolulu
- Applications
- Internet packet routing
- Flight reservations

Shortest Path Properties

Property 1:
A subpath of a shortest path is itself a shortest path
Property 2:
There is a tree of shortest paths from a start vertex to all the other vertices
Example:
Tree of shortest paths from Providence

Dijkstra's Algorithm

- The distance of a vertex \boldsymbol{v} from a vertex s is the length of a shortest path between s and v
- Dijkstra's algorithm computes the distances of all the vertices from a given start vertex s
- Assumptions:
- the graph is connected
- the edges are undirected
- the edge weights are nonnegative
- We grow a "cloud" of vertices, beginning with s and eventually covering all the vertices
- We store with each vertex v a label $d(v)$ representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices
- At each step
- We add to the cloud the vertex u outside the cloud with the smallest distance label, $\boldsymbol{d}(\boldsymbol{u})$
- We update the labels of the vertices adjacent to \boldsymbol{u}

Edge Relaxation

Consider an edge $e=(u, z)$ such that

- u is the vertex most recently added to the cloud
- z is not in the cloud

- The relaxation of edge e updates distance $d(z)$ as follows:

$$
d(z) \leftarrow \min \{d(z), d(u)+\text { weight }(e)\}
$$

Example

Example (cont.)

Shortest Paths

Dijkstra's Algorithm

- A priority queue stores the vertices outside the cloud
- Key: distance
- Element: vertex
- Locator-based methods
- insert(k,e) returns a locator
- replaceKey(l,k) changes the key of an item
- We store two labels with each vertex:
- distance (d(v) label)
- locator in priority queue

```
Algorithm DijkstraDistances( \(G, s\) )
    \(Q \leftarrow\) new heap-based priority queue
    for all \(v \in G\).vertices()
    if \(v=s\)
        setDistance \((v, 0)\)
    else
        setDistance \((v, \infty)\)
        \(l \leftarrow Q . \operatorname{insert}(\) getDistance \((v), v)\)
        setLocator (v,l)
    while \(\neg\) Q.isEmpty ()
        \(u \leftarrow\) Q.removeMin()
    for all \(e \in\) G.incidentEdges(u)
        \(\{\) relax edge \(\boldsymbol{e}\}\)
        \(z \leftarrow\) G.opposite (u,e)
        \(r \leftarrow\) getDistance \((\boldsymbol{u})+\) weight \((\boldsymbol{e})\)
        if \(r<\operatorname{get}\) Distance \((z)\)
        setDistance \((z, r)\)
        Q.replaceKey (getLocator(z),r)
```


Analysis

- Graph operations
- Method incidentEdges is called once for each vertex
- Label operations
- We set/get the distance and locator labels of vertex $\boldsymbol{z} \boldsymbol{O}(\operatorname{deg}(z))$ times
- Setting/getting a label takes $\boldsymbol{O}(1)$ time
- Priority queue operations
- Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $\boldsymbol{O}(\log \boldsymbol{n})$ time
- The key of a vertex in the priority queue is modified at most $\operatorname{deg}(w)$ times, where each key change takes $\boldsymbol{O}(\log n)$ time
- Dijkstra's algorithm runs in $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \log \boldsymbol{n})$ time provided the graph is represented by the adjacency list structure
- Recall that $\Sigma_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$
- The running time can also be expressed as $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{n})$ since the graph is connected

Extension

- Using the template method pattern, we can extend Dijkstra's algorithm to return a tree of shortest paths from the start vertex to all other vertices
- We store with each vertex a third label:
- parent edge in the shortest path tree
- In the edge relaxation step, we update the parent label

Algorithm DijkstraShortestPathsTree(G, s)

```
for all \(v \in\) G.vertices()
setParent \((v, \varnothing)\)
for all \(e \in\) G.incidentEdges(u)
    \(\{\) relax edge \(\boldsymbol{e}\}\)
    \(z \leftarrow\) G.opposite (u,e)
    \(r \leftarrow \operatorname{getDistance}(u)+\) weight \((e)\)
    if \(r<\) getDistance \((z)\)
        setDistance \((z, r)\)
        setParent (z,e)
        Q.replaceKey (getLocator(z),r)
```


Why Dijkstra's Algorithm Works

- Dijkstra's algorithm is based on the greedy method. It adds vertices by increasing distance.
- Suppose it didn't find all shortest distances. Let F be the first wrong vertex the algorithm processed.
- When the previous node, D, on the true shortest path was considered, its distance was correct.
- But the edge (D,F) was relaxed at that time!

- Thus, so long as $d(F) \geq d(D)$, F's distance cannot be wrong. That is, there is no wrong vertex.

Why It Doesn’t Work for Negative-Weight Edges

- Dijkstra's algorithm is based on the greedy method. It adds vertices by increasing distance.
- If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud.

C's true distance is 1 , but it is already in the cloud with $d(C)=5$!

Bellman-Ford Algorithm

- Works even with negativeweight edges
- Must assume directed edges (for otherwise we would have negativeweight cycles)
- Iteration i finds all shortest paths that use i edges.
- Running time: O(nm).
- Can be extended to detect a negative-weight cycle if it exists
- How?

```
Algorithm BellmanFord \((G, s)\)
    for all \(v \in G\).vertices()
        if \(v=s\)
        setDistance( \(v, 0)\)
        else
            setDistance \((\nu, \infty)\)
    for \(i \leftarrow 1\) to \(n-1\) do
        for each \(e \in\) G.edges()
            \(\{\) relax edge \(\boldsymbol{e}\) \}
            \(u \leftarrow\) G.origin(e)
            \(z \leftarrow\) G.opposite (u,e)
            \(r \leftarrow \operatorname{getDistance}(u)+\) weight \((e)\)
            if \(r<\operatorname{getDistance}(z)\)
            setDistance \((z, r)\)
```


Bellman-Ford Example

 Nodes are labeled with their $\mathrm{d}(\mathrm{v})$ values

DAG-based Algorithm

- Works even with negative-weight edges
- Uses topological order
- Doesn't use any fancy data structures
- Is much faster than Dijkstra's algorithm
- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$.

```
Algorithm DagDistances(G, s)
    for all v\inG.vertices()
        if v=s
            setDistance(v, 0)
        else
            setDistance(v,\infty)
    Perform a topological sort of the vertices
    for }u\leftarrow1\mathrm{ to }n\mathrm{ do {in topological order}
        for each e G G.outEdges(u)
            {relax edge e }
            ~}\leftarrowG.opposite(u,e
            r\leftarrowgetDistance(u)+weight(e)
            if r<getDistance(z)
            setDistance(z,r)
```


DAG Example

Nodes are labeled with their $\mathrm{d}(\mathrm{v})$ values

All-Pairs Shortest Paths

- Find the distance between every pair of vertices in a weighted directed graph G.
- We can make n calls to Dijkstra's algorithm (if no negative edges), which takes O(nmlog n) time.
- Likewise, n calls to Bellman-Ford would take $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$ time.
- We can achieve $O\left(n^{3}\right)$ time using dynamic programming (similar to the Floyd-Warshall algorithm).

```
Algorithm AllPair \((\boldsymbol{G})\) \{assumes vertices \(1, \ldots, \boldsymbol{n}\}\)
for all vertex pairs ( \(i, j\) )
    if \(i=j\)
        \(D_{0}[i, i] \leftarrow 0\)
    else if \((i, j)\) is an edge in \(G\)
        \(D_{0}[i, j] \leftarrow\) weight of edge \((i, j)\)
    else
        \(D_{0}[i, j] \leftarrow+\infty\)
for \(k \leftarrow 1\) to \(n\) do
    for \(i \leftarrow 1\) to \(n\) do
        for \(j \leftarrow 1\) to \(n\) do
            \(D_{k}[i, j] \leftarrow \min \left\{D_{k-1}[i, j], D_{k-1}[i, k]+D_{k-1}[k, j]\right\}\)
return \(D_{n}\)
```

	Uses only vertices numbered $1, \ldots, k$ (compute weight of this edge)
es only	
numbered	Uses only vertices numbered $1, k$-1
Shortest Path	

