

Directed Graphs

MIA

Outline and Reading (§12.4)

Reachability (§12.4.1)

- Directed DFS
- Strong connectivity

Transitive closure (§12.4.2)

The Floyd-Warshall Algorithm

Directed Acyclic Graphs (DAG's) (§12.4.3) Topological Sorting

Digraphs

Digraph Properties

- ♦ A graph G=(V,E) such that
 - Each edge goes in one direction:
 - Edge (a,b) goes from a to b, but not b to a.
- ♦ If G is simple, $m \le n^*(n-1)$.
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of inedges and out-edges in time proportional to their size.

Digraph Application

Scheduling: edge (a,b) means task a must be completed before b can be started

Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting a a vertex s determines the vertices reachable from s

Reachability

DFS tree rooted at v: vertices reachable from v via directed paths

Strong Connectivity

Each vertex can reach all other vertices

Strong Connectivity Algorithm

Pick a vertex v in G.
Perform a DFS from v in G.
If there's a w not visited, print "no".
Let G' be G with edges reversed.
Perform a DFS from v in G'.
If there's a w not visited, print "no".
Else, print "yes".

Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in O(n+m) time using DFS, but is more complicated (similar to biconnectivity).

Transitive Closure

- Given a digraph G, the transitive closure of G is the digraph G* such that
 - G* has the same vertices as G
 - if G has a directed path from u to $v (u \neq v)$, G* has a directed edge from u to v
- The transitive closure provides reachability information about a digraph

Computing the Transitive Closure

We can perform
 DFS starting at
 each vertex
 O(n(n+m))

If there's a way to get from A to B and from B to C, then there's a way to get from A to C.

Alternatively ... Use
 dynamic programming:
 The Floyd-Warshall
 Algorithm

IWW.GENIUS. Com

Floyd-Warshall's Algorithm

- Floyd-Warshall's algorithm numbers the vertices of G as $v_1, ..., v_n$ and computes a series of digraphs $G_0, ..., G_n$
 - G₀=G
 G_k has a directed edge (v_i, v_j) if G has a directed path from v_i to v_j with intermediate vertices in the set {v₁, ..., v_k}
- We have that $G_n = G^*$
- In phase k, digraph G_k is computed from G_{k-1}
 Running time: O(n³), assuming areAdjacent is O(1) (e.g., adjacency matrix)

Algorithm *FloydWarshall(G)* Input digraph G Output transitive closure G* of G $i \leftarrow 1$ for all $v \in G.vertices()$ denote v as v_i $i \leftarrow i + 1$ $G_0 \leftarrow G$ for $k \leftarrow 1$ to n do $G_k \leftarrow G_{k-1}$ for $i \leftarrow 1$ to $n \ (i \neq k)$ do for $j \leftarrow 1$ to $n \ (j \neq i, k)$ do if G_{k-1} . are Adjacent $(v_i, v_k) \land$ G_{k-1} .areAdjacent(v_k, v_j) if $\neg G_k$.areAdjacent(v_i, v_j) G_k .insertDirectedEdge (v_i, v_j, k) return G_n

DAGs and Topological Ordering

A directed acyclic graph (DAG) is a digraph that has no directed cycles
 A topological ordering of a digraph is a numbering

 v_1 , ..., v_n of the vertices such that for every edge (v_i, v_j) , we have i < j

Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints

Theorem

A digraph admits a topological ordering if and only if it is a DAG

Topological Sorting

 \otimes Number vertices, so that (u,v) in E implies u < v

Algorithm for Topological Sorting

Note: This algorithm is different than the one in Goodrich-Tamassia

Method TopologicalSort(G) $H \leftarrow G$ // Temporary copy of G $n \leftarrow G.numVertices()$ while H is not empty do Let v be a vertex with no outgoing edges Label $v \leftarrow n$ $n \leftarrow n - 1$ Remove v from H

Running time: O(n + m). How...?

Topological Sorting Algorithm using DFS

 Simulate the algorithm by using depth-first search

Algorithm topologicalDFS(G) Input dag G Output topological ordering of G $n \leftarrow G.numVertices()$ for all $u \in G.vertices()$ setLabel(u, UNEXPLORED)for all $e \in G.edges()$ setLabel(e, UNEXPLORED)for all $v \in G.vertices()$ if getLabel(v) = UNEXPLOREDtopologicalDFS(G, v)

O(n+m) time.

Algorithm *topologicalDFS*(*G*, *v*) **Input** graph *G* and a start vertex *v* of *G* Output labeling of the vertices of G in the connected component of vsetLabel(v, VISITED) for all $e \in G.incidentEdges(v)$ if getLabel(e) = UNEXPLORED $w \leftarrow opposite(v,e)$ **if** getLabel(w) = UNEXPLORED setLabel(e, DISCOVERY) topologicalDFS(G, w) else {*e* is a forward or cross edge}

Label v with topological number n

 $n \leftarrow n - 1$

