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Outline and Reading (§12.4)

Reachability (§12.4.1)
Directed DFS
Strong connectivity

Transitive closure (§12.4.2)
The Floyd-Warshall Algorithm

Directed Acyclic Graphs (DAG’s) (§12.4.3)
Topological Sorting
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Digraphs

A digraph is a graph 
whose edges are all 
directed

Short for “directed graph”

Applications
one-way streets
flights
task scheduling A
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Digraph Properties

A graph G=(V,E) such that
Each edge goes in one direction:

Edge (a,b) goes from a to b, but not b to a.

If G is simple, m < n*(n-1).
If we keep in-edges and out-edges in separate 
adjacency lists, we can perform listing of in-
edges and out-edges in time proportional to 
their size.
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Digraph Application
Scheduling: edge (a,b) means task a must be 
completed before b can be started
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The good life
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Directed DFS
We can specialize the 
traversal algorithms (DFS and 
BFS) to digraphs by 
traversing edges only along 
their direction
In the directed DFS 
algorithm, we have four 
types of edges

discovery edges
back edges
forward edges
cross edges

A directed DFS starting a a 
vertex s determines the 
vertices reachable from s
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Reachability

DFS tree rooted at v: vertices reachable 
from v via directed paths
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Strong Connectivity
Each vertex can reach all other vertices
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Strong Connectivity 
Algorithm

Pick a vertex v in G.
Perform a DFS from v in G.

If there’s a w not visited, print “no”.

Let G’ be G with edges reversed.
Perform a DFS from v in G’.

If there’s a w not visited, print “no”.
Else, print “yes”.

Running time: O(n+m).
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Strongly Connected 
Components

Maximal subgraphs such that each vertex can reach 
all other vertices in the subgraph
Can also be done in O(n+m) time using DFS, but is 
more complicated (similar to biconnectivity).
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Transitive Closure
D EGiven a digraph G, the 

transitive closure of G is the 
digraph G* such that

G* has the same vertices 
as G
if G has a directed path 
from u to v (u ≠ v), G*
has a directed edge from 
u to v

The transitive closure 
provides reachability 
information about a digraph
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Computing the 
Transitive Closure

We can perform 
DFS starting at 
each vertex

O(n(n+m))

If there's a way to get  
from A to B and from        
B to C, then there's a        
way to get from A to C.

Alternatively ... Use 
dynamic programming: 
The Floyd-Warshall
Algorithm
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Floyd-Warshall
Transitive Closure

Idea #1: Number the vertices 1, 2, …, n.
Idea #2: Consider paths that use only 
vertices numbered 1, 2, …, k, as 
intermediate vertices:

k

jUses only vertices
numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(add this edge if it’s not already in)

i

Uses only vertices
numbered 1,…,k-1
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Floyd-Warshall’s Algorithm
Algorithm FloydWarshall(G)

Input digraph G
Output transitive closure G* of G
i ← 1
for all v ∈ G.vertices()

denote v as vi
i ← i + 1

G0 ← G
for k ← 1 to n do

Gk ← Gk − 1
for i ← 1 to n (i ≠ k) do

for j ← 1 to n (j ≠ i, k) do
if Gk − 1.areAdjacent(vi, vk) ∧

Gk − 1.areAdjacent(vk, vj)
if ¬Gk.areAdjacent(vi, vj)

Gk.insertDirectedEdge(vi, vj , k)
return Gn

Floyd-Warshall’s algorithm 
numbers the vertices of G as 
v1 , …, vn and computes a 
series of digraphs G0, …, Gn

G0=G
Gk has a directed edge (vi, vj) 
if G has a directed path from 
vi to vj with intermediate 
vertices in the set {v1 , …, vk}

We have that Gn = G*
In phase k, digraph Gk is 
computed from Gk − 1

Running time: O(n3), 
assuming areAdjacent is O(1) 
(e.g., adjacency matrix)
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Floyd-Warshall Example
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Floyd-Warshall, Iteration 1
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Floyd-Warshall, Iteration 2
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Floyd-Warshall, Iteration 3
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Floyd-Warshall, Iteration 4
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Floyd-Warshall, Iteration 5
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Floyd-Warshall, Iteration 6
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Floyd-Warshall, Conclusion

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
BOS



Directed Graphs 23

DAGs and Topological Ordering
D EA directed acyclic graph (DAG) is a 

digraph that has no directed cycles
A topological ordering of a digraph 
is a numbering 

v1 , …, vn

of the vertices such that for every 
edge (vi , vj), we have i < j
Example: in a task scheduling 
digraph, a topological ordering a 
task sequence that satisfies the 
precedence constraints

Theorem
A digraph admits a topological 
ordering if and only if it is a DAG
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write c.s. program

play

Number vertices, so that (u,v) in E implies u < v
wake up

eat

nap

study computer sci.

more c.s.

work out

sleep

dream about graphs

A typical student day1
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make cookies 
for professors

Topological Sorting
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Algorithm for Topological Sorting

Note: This algorithm is different than the 
one in Goodrich-Tamassia

Running time: O(n + m).  How…?

Method TopologicalSort(G)
H ← G // Temporary copy of G
n ← G.numVertices()
while H is not empty do

Let v be a vertex with no outgoing edges
Label v ← n
n ← n - 1
Remove v from H
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Topological Sorting 
Algorithm using DFS

Algorithm topologicalDFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the vertices of G

in the connected component of v
setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
topologicalDFS(G, w)

else
{e is a forward or cross edge}

Label v with topological number n
n ← n - 1

Simulate the algorithm by using 
depth-first search

O(n+m) time.

Algorithm topologicalDFS(G)
Input dag G
Output topological ordering of G

n ← G.numVertices()
for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)
for all e ∈ G.edges()

setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED
topologicalDFS(G, v)
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
2 1
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