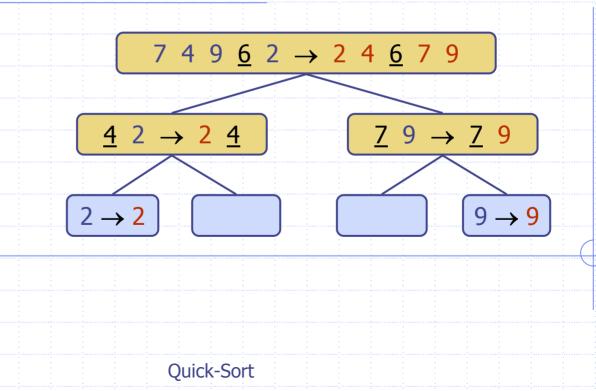
Quick-Sort



Outline and Reading

Quick-sort (§10.3)

- Algorithm
- Partition step
- Quick-sort tree
- Execution example

Analysis of quick-sort (§10.3.1)
 In-place quick-sort (§10.3.1)

Summary of sorting algorithms

Quick-Sort

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: pick a random element x (called pivot) and partition S into
 - *L* elements less than *x*
 - E elements equal x
 - G elements greater than x
 - Recur: sort L and G
 - Conquer: join *L*, *E* and *G*

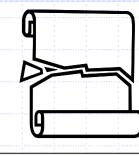
X

E

Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G_{i} depending on the result of the comparison with the pivot x

Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time



Algorithm *partition*(*S*, *p*)

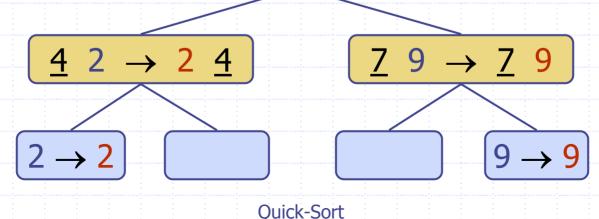
Input sequence *S*, position *p* of pivot Output subsequences *L*, *E*, *G* of the elements of S less than, equal to, or greater than the pivot, resp. *L*, *E*, *G* \leftarrow empty sequences $x \leftarrow S.remove(p)$ while *¬S.isEmpty()* $y \leftarrow S.remove(S.first())$ if y < x*L.insertLast(y)* else if y = x*E.insertLast(y)* else $\{y > x\}$ G.insertLast(y) return L, E, G

Ouick-Sort

Quick-Sort Tree

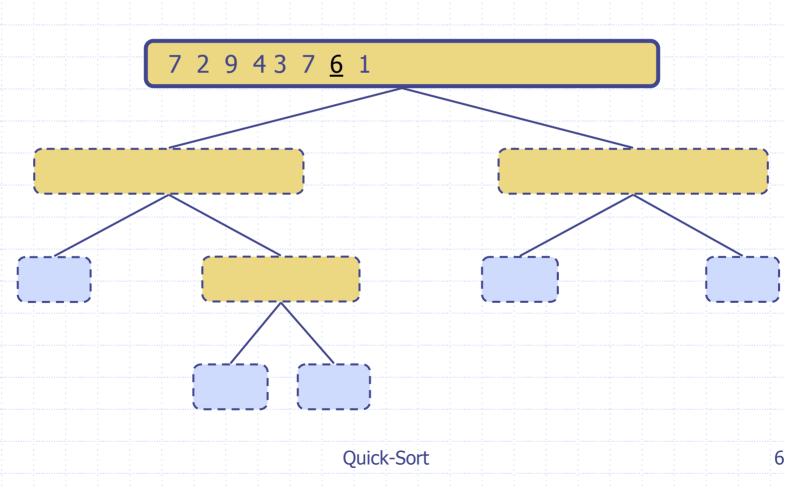
An execution of quick-sort is depicted by a binary tree

- Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

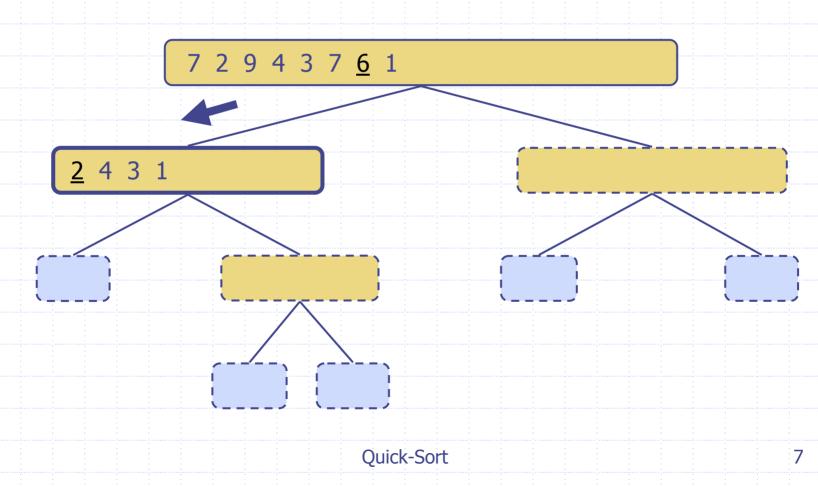


Execution Example

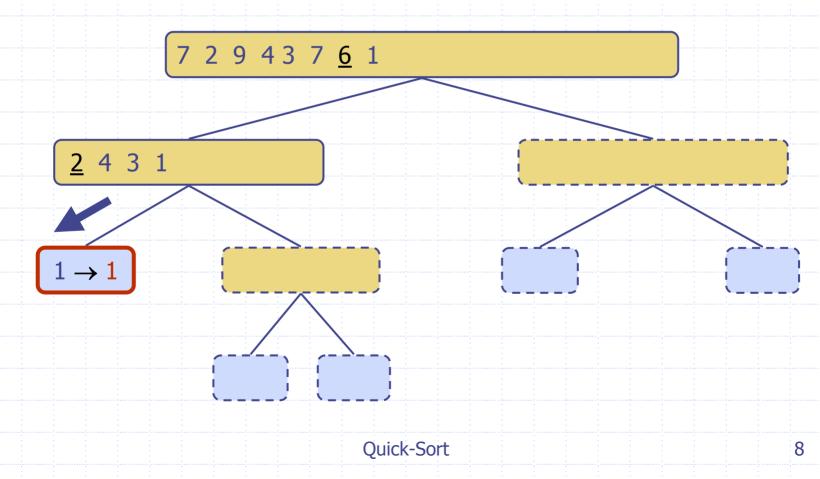
Pivot selection



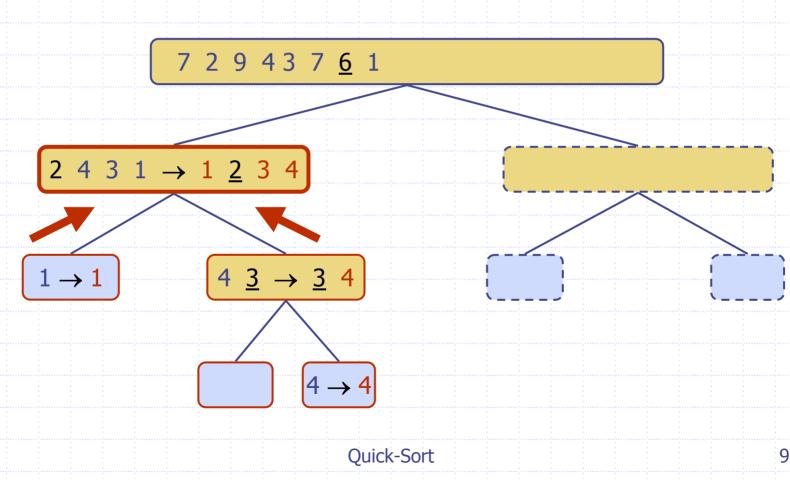
Partition, recursive call, pivot selection

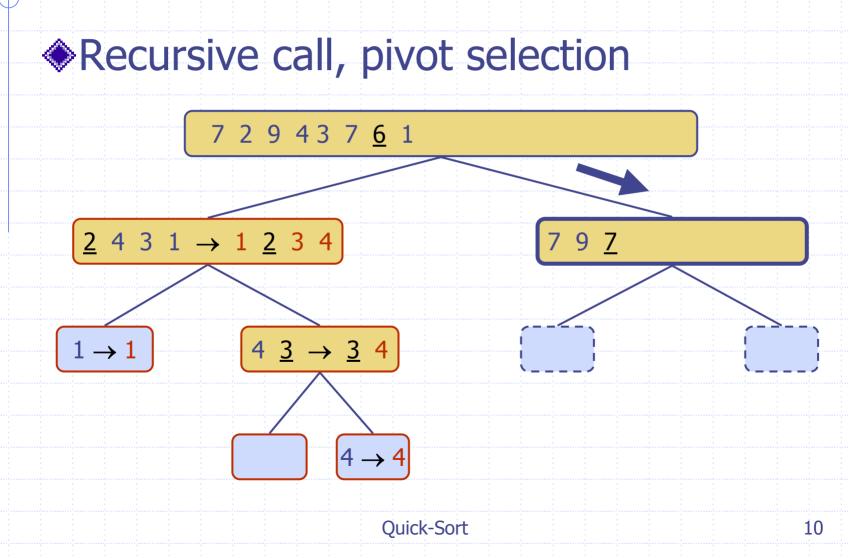


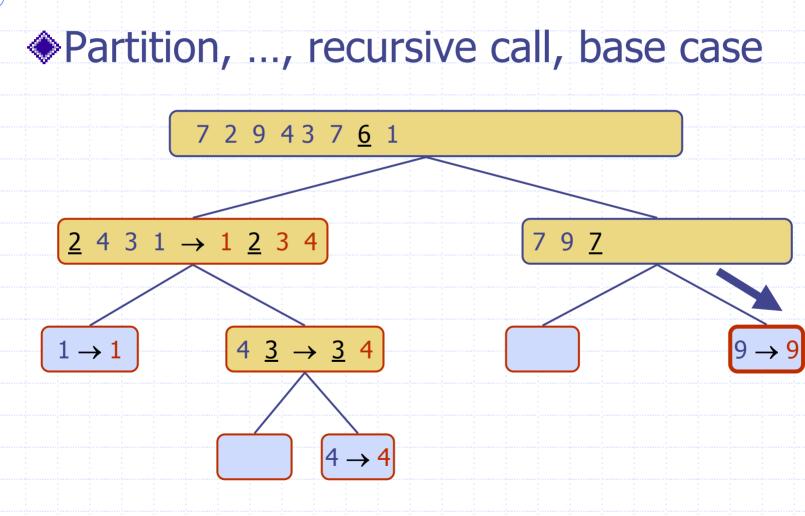
Partition, recursive call, base case

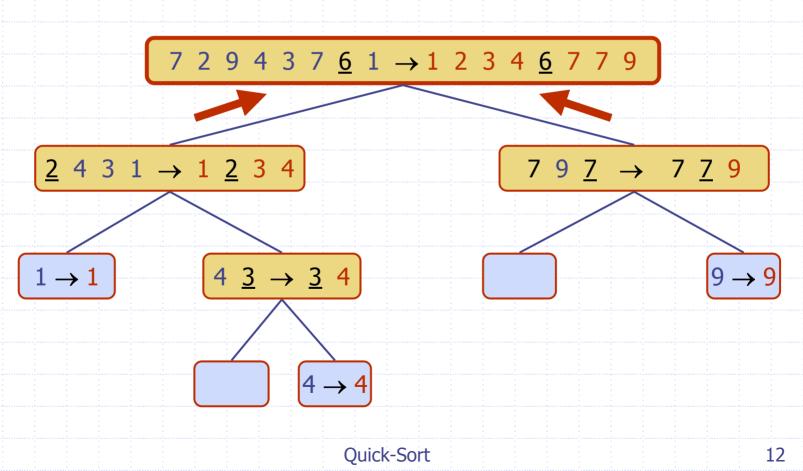


Recursive call, ..., base case, join









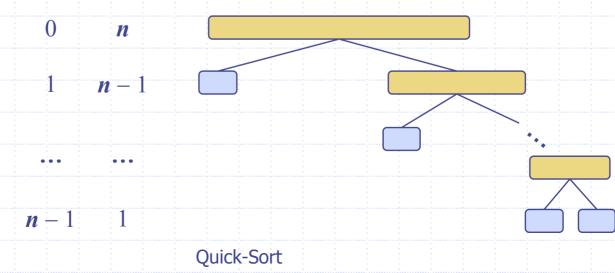
Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- One of *L* and *G* has size n 1 and the other has size 0
- The running time is proportional to the sum

$$n + (n - 1) + \ldots + 2 + 1$$

• Thus, the worst-case running time of quick-sort is $O(n^2)$

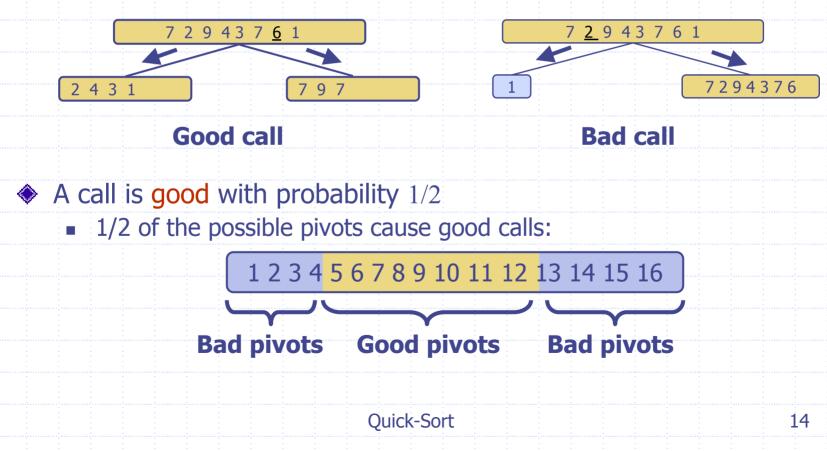
depth time



13

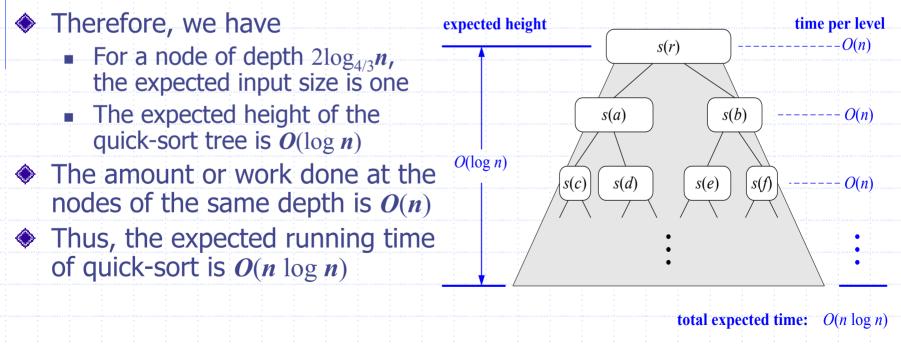
Expected Running Time

- Consider a recursive call of quick-sort on a sequence of size s
 Good call: the sizes of L and G are each less than 3s/4
 - **Bad call:** one of *L* and *G* has size greater than 3s/4



Expected Running Time, Part 2

- Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2k
- For a node of depth *i*, we expect
 - *i*/2 ancestors are good calls
 - The size of the input sequence for the current call is at most $(3/4)^{i/2}n$



In-Place Quick-Sort

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 - the elements less than the pivot have rank less than h
 - the elements equal to the pivot have rank between h and k
 - the elements greater than the pivot have rank greater than k
- The recursive calls consider
 - elements with rank less than h
 - elements with rank greater

Algorithm *inPlaceQuickSort(S, l, r)*

- **Input** sequence *S*, ranks *l* and *r*
- Output sequence *S* with the elements of rank between *l* and *r* rearranged in increasing order
- if $l \ge r$

return

- $i \leftarrow$ a random integer between l and r
- $x \leftarrow S.elemAtRank(i)$
- $(h, k) \leftarrow inPlacePartition(x)$
- inPlaceQuickSort(S, l, h 1)
- inPlaceQuickSort(S, k + 1, r)

In-Place Partitioning

• Perform the partition using two indices to split S into L and $E \cup G$ (a similar method can split $E \cup G$ into E and G).

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 <u>6</u> 9

(pivot = 6)

k

Repeat until j and k cross:

- Scan j to the right until finding an element > x.
- Scan k to the left until finding an element < x.</p>
- Swap elements at indices j and k

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 <u>6</u> 9

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	O (n ²)	in-placeslow (good for small inputs)
insertion-sort	O (n ²)	in-placeslow (good for small inputs)
quick-sort	O(n log n) expected	 in-place, randomized fastest (good for large inputs)
heap-sort	O (n log n)	in-placefast (good for large inputs)
merge-sort	O (n log n)	 sequential data access fast (good for huge inputs)
	Quick-Sort	18