
Binary Search Trees 1

Binary Search Trees

6

2

<

9

4 =

>
1 8



Binary Search Trees 2

Ordered Dictionaries

Keys are assumed to come from a total 
order.
New operations: 

closestBefore(k)
closestAfter(k)



Binary Search Trees 3

Binary Search (§8.3.3)
Binary search performs operation find(k) on a dictionary 
implemented by means of an array-based sequence, sorted by key

similar to the high-low game
at each step, the number of candidate items is halved
terminates after O(log n) steps

Example: find(7)

0 1 3 4 5 7 8 9 11 14 16 18 19

0

ml h

m hl

1 3 4 5 7 8 9 11 14 16 18 19

0 1 3 4 5 7 8 9 11 14 16 18 19

m hl
0 1 3 4 5 7 8 9 11 14 16 18 19

l=m =h



Binary Search Trees 4

Lookup Table (§8.3.2)

A lookup table is a dictionary implemented by means of a sorted 
sequence

We store the items of the dictionary in an array-based sequence, 
sorted by key
We use an external comparator for the keys

Performance:
find takes O(log n) time, using binary search
insertItem takes O(n) time since in the worst case we have to shift 
n/2 items to make room for the new item
removeElement take O(n) time since in the worst case we have to 
shift n/2 items to compact the items after the removal

The lookup table is effective only for dictionaries of small size or 
for dictionaries on which searches are the most common 
operations, while insertions and removals are rarely performed 
(e.g., credit card authorizations)



Binary Search Trees 5

Binary Search 
Tree (§9.1)
A binary search tree is a 
binary tree storing keys 
(or key-element pairs) 
at its internal nodes and 
satisfying the following 
property:

Let u, v, and w be three 
nodes such that u is in 
the left subtree of v and 
w is in the right subtree 
of v. We have 
key(u) ≤ key(v) ≤ key(w)

External nodes do not 
store items

An inorder traversal of a 
binary search trees 
visits the keys in 
increasing order

6

92

41 8



Binary Search Trees 6

Search (§9.1.1)
Algorithm find (k, v)

if T.isExternal (v)
return Position(null)

if k < key(v)
return find(k, T.leftChild(v))

else if k = key(v)
return Position(v)

else { k > key(v) }
return find(k, T.rightChild(v))

To search for a key k, 
we trace a downward 
path starting at the root
The next node visited 
depends on the 
outcome of the 
comparison of k with 
the key of the current 
node
If we reach a leaf, the 
key is not found and we 
return a null position
Example: find(4)

6

2

<

9

4 =

>
1 8



Binary Search Trees 7

Insertion (§9.1.2)
To perform operation 
insertItem(k, o), we search 
for key k
Assume k is not already in 
the tree, and let let w be 
the leaf reached by the 
search
We insert k at node w and 
expand w into an internal 
node
Example: insert 5

6

92

41 8

6

92

<

4

w

>
1

>
8

w
5



Binary Search Trees 8

Deletion (§9.1.2)
6To perform operation 

removeElement(k), we 
search for key k
Assume key k is in the tree, 
and let let v be the node 
storing k
If node v has a leaf child w, 
we remove v and w from the 
tree with operation 
removeAboveExternal(w)
Example: remove 4

4

5

v
w

>
92

<

1 8

6

2 9

51 8



Binary Search Trees 9

Deletion (cont.)
1

We consider the case where 
the key k to be removed is 
stored at a node v whose 
children are both internal

we find the internal node w 
that follows v in an inorder 
traversal
we copy key(w) into node v
we remove node w and its 
left child z (which must be a 
leaf) by means of operation 
removeAboveExternal(z)

Example: remove 3

3

8

v

2

6

5
w

z

9

1

5
v

2 8

6 9



Binary Search Trees 10

Performance
Consider a dictionary 
with n items 
implemented by means 
of a binary search tree 
of height h

the space used is O(n)
methods findElement() , 
insertItem() and 
removeElement() take 
O(h) time

The height h is O(n) in 
the worst case and 
O(log n) in the best 
case


	Binary Search Trees
	Ordered Dictionaries
	Binary Search (§8.3.3)
	Lookup Table (§8.3.2)
	Binary Search Tree (§9.1)
	Search (§9.1.1)
	Insertion (§9.1.2)
	Deletion (§9.1.2)
	Deletion (cont.)
	Performance

