Trees

Make Money Fast!

4/1/2003 9:01 AM Trees 1

Outline and Reading

% Tree ADT (86.1)

Preorder and postorder traversals (§6.2.3)
BinaryTree ADT (§6.3.1)

4 Inorder traversal (§6.3.4)

4@ Euler Tour traversal (§6.3.4)

4 Template method pattern (§6.3.5)

% Data structures for trees (§6.4)

4 C++ implementation (§6.4.2)

4/1/2003 9:01 AM Trees 2

‘What is a Tree

4 In computer science, a
tree is an abstract model
of a hierarchical
structure

4 A tree consists of nodes
with a parent-child
relation

Applications:

= Organization charts

= File systems X

= Programming
environments

Manufacturing

[International] [Laptops] [Desktops]

4/1/2003 9:01 AM Trees 3

‘Tree Terminology

4 Root: node without parent (A) 4 Subtree: tree consisting of

Internal node: node with at least a node and its
one child (A, B, C, F) descendants

*
External node (a.k.a. leaf): node
*

without children (E, I, J, K, G, H, D)
Ancestors of a node: parent,
grandparent, grand-grandparent,
etc.

4 Depth of a node: number of
ancestors

Height of a tree: maximum depth
of any node (3)

Descendant of a node: child,
grandchild, grand-grandchild, etc.

4/1/2003 9:01 AM Trees 4

Tree ADT

" # We use positions to abstract ~ # Query methods:

nodes = boolean isInternal(p)
@ Generic methods: = boolean isExternal(p)
= integer size() = boolean isRoot(p)
= boolean isEmpty() # Update methods:
= objectlterator elements() = swapElements(p, q)
= positionIterator positions() = object replaceElement(p, 0)
Accessor methods: # Additional update methods
= position root() may be defined by data
= position parent(p) structures implementing the
= positionIterator children(p) Tree ADT

4/1/2003 9:01 AM Trees 5

Preorder Traversal

4 Atraversal visits the nodes of a Algorithm preOrder(v)

tree in a systematic manner

In a preorder traversal, a node is
visited before its descendants

Application: print a structured preorder (w)
document

Visit(v)
for each child w of v

1

Make Money Fast!

[2. Methods] [References]

6 __— 7] —8
T 2.1 Stock 2.2 Ponzi 2.3 Bank
ERREENEE)

4/1/2003 9:01 AM Trees 6

Postorder Traversal

Ina postorder traversal, a Algorithm postOrder(v)
node is visited after its fe h child w of
descendants or each child w of v

4 Application: compute space postOrder (w)
used by files in a directory and Visit(v)

its subdirectories

homeworks/
2 4
hic.doc hinc.doc DDR.java Stocks.java Robot.java
3K 2K 10K 25K 20K

4/1/2003 9:01 AM Trees 7

‘Binary Tree

@ A binary tree is a tree with the # Applications:
following properties:
= Each internal node has two
children
= The children of a node are an
ordered pair
We call the children of an internal
node left child and right child
Alternative recursive definition: a
binary tree is either
= a tree consisting of a single node,
or
= a tree whose root has an ordered
pair of children, each of which is a
binary tree

= arithmetic expressions
= decision processes
= searching

a

®

4/1/2003 9:01 AM Trees 8

Arithmetic Expression Tree

4 Binary tree associated with an arithmetic expression
= internal nodes: operators
= external nodes: operands
4 Example: arithmetic expression tree for the
expression (2 x (@—-1) + (3 x b))

4/1/2003 9:01 AM Trees 9

Decision Tree

4 Binary tree associated with a decision process
= internal nodes: questions with yes/no answer
= external nodes: decisions

Example: dining decision

Want a fast meal?

Yes No

[How about coffee?] [On expense account?]

Yes, No Yes No
| Starbucks | | Spike's

[Al Forno| | café Paragon |

4/1/2003 9:01 AM Trees 10

Properties of Binary Trees

Notation # Properties:
n_number of nodes me=i+1
e number of Wme2eo1
external nodes
i number of internal » h<i
nodes h<(n-1)2
h height e<
h>log, e
h2log, (n+1)—1
4/1/2003 9:01 AM Trees 1

‘BinaryTree ADT

The BinaryTree ADT # Update methods
extends the Tree may be defined by

ADT, i.e., it inherits data structures
all the methods of implementing the
the Tree ADT BinaryTree ADT

Additional methods:
= position leftChild(p)
= position rightChild(p)
= position sibling(p)

4/1/2003 9:01 AM Trees 12

Inorder Traversal

In an inorder traversal a Algorithm inOrder(v)
node is visited after its left o
subtree and before its right if isInternal (v)
subtree inOrder (leftChild (v))
* ?pplication: draw a binary visit(v)
ree
= X(v) = inorder rank of v if isInternal (v)
= y(v) = depth of v 6 inOrder (rightChild (v))

4/1/2003 9:01 AM Trees 13

Print Arithmetic Expressions

4 Specialization of an inorder Algorithm printExpression(v)

traversal if isInternal (v)
= print operand or operator N g
when visiting node print("(")
. Sp{jlgttr;g‘ before traversing left inOrder (leftChild (v))

= print “)" after traversing right print(v.element ())
subtree e
if isInternal (v)
inOrder (rightChild (v))
print (")")

(2x@-1))+ (3 xb))

4/1/2003 9:01 AM Trees 14

'Evaluate Arithmetic Expressions

Specialization of a postorder | Algorithm evalExpr(v)

traversal if isExternal (v)
= recursive method returning return v.element ()
the value of a subtree else

= when visiting an internal
node, combine the values
of the subtrees

x < evalExpr(leftChild (v))
y < evalExpr(rightChild (v))
{ « operator stored at v
return x 9 y

4/1/2003 9:01 AM Trees 15

'Euler Tour Traversal

4 Generic traversal of a binary tree
Includes a special cases the preorder, postorder and inorder traversals
4 Walk around the tree and visit each node three times:
= on the left (preorder)
= from below (inorder)
= on the right (postorder) \
>

4/1/2003 9:01 AM Trees 16

‘Template Method Pattern

- . class EulerTour {

Generic algorithm that protected:

can be specialized by BinaryTree* tree;

redefining certain steps virtual void visitExternal(Position p, Resultr) { }
Implemented by means of| virtual void visitLeft(Position p, Result) { }

an abstract C++ class virtual void visitBelow(Position p, Result) { }
Visit methods that can be | virtual void visitRight(Position p, Result r) {}
redefined by subclasses int eulerTour(Position p) {

Template method eulerTour| ~ Resultr=iniResul(
« Recursively called on the if (tree—>isExternal(p)) { visitExternal(p, r); }

left and right children else { bt 1)
. P visi L 1);
* Qﬁ%eeiﬂ\ttor%];%e‘sﬂﬁggg 1ds rleftResult = eulerTour(tree—>leftChild(p));
finalResult keeps track of visitBelow(p, r);
the output of the r.rightResult = eulerTour(tree—>rightChild(p));
recursive calls to eulerTour| visitRight(p, r);

return r.finalResult;
}1I ... other details omitted

4/1/2003 9:01 AM Trees 17

‘Specializations of EulerTour

We show how to class EvaluateExpression
specialize class EulerTour : public EulerTour {
to evaluate an arithmetic | Potected:

void visitExternal(Position p, Result r) {

expression r.finalResult = p.element().value();

Assumptions

= External nodes support
a function value(),
which returns the value
of this node.
Internal nodes provide a }
function operation(int,
int), which returns the II.... other details omitted
result of some binary]
operator on integers.

void visitRight(Position p, Result r) {
Operator op = p.element().operator();
r.finalResult = p.element().operation(
r.leftResult, r.rightResult);

4/1/2003 9:01 AM Trees 18

‘Data Structure for Trees

A node is represented by
an object storing
= Element n@ﬂ om
= Parent node

= Sequence of children
nodes

E

+

Node objects implement
the Position ADT

4/1/2003 9:01 AM Trees

‘Data Structure for Binary Trees

A node is represented
by an object storing
= Element
= Parent node
= Left child node
= Right child node
% Node objects implement
the Position ADT

4/1/2003 9:01 AM

e e

20

C++ Implementation

Tree interface
BinaryTree interface
extending Tree v
Classes implementing Tree
and BinaryTree and
providing
= Constructors
= Update methods
= Print methods
Examples of updates for
binary trees o
= expandExternal(v) w
= removeAboveExternal(w) E

expandExternal(v)

4/1/2003 9:01 AM Trees

removeAboveExternal(w)

21

