Lists and Sequences

[pl ot

4/1/2003 8:57 AM Sequences 1

Outline and Reading

#Singly linked list

#Position ADT and List ADT (§5.2.1)

#Doubly linked list (§ 5.2.3)

#Sequence ADT (8§5.3.1)

#Implementations of the sequence ADT
(85.3.3)

#Iterators (§5.5)

4/1/2003 8:57 AM Sequences 2

‘Singly Linked List

@ A singly linked list is a

concrete data structure { next |
consisting of a sequence | 3
of nodes |
Each node stores |
= element 1\\ elem node /;

= link to the next node B R i

A B C D
4/1/2003 8:57 AM Sequences 3

‘Stack with a Singly Linked List

We can implement a stack with a singly linked list

% The top element is stored at the first node of the list

4 The space used is O(n) and each operation of the
Stack ADT takes O(1) time

{ nodes)
i |
| |
(—lp [e—e el [l p [oo
N J
O Y v ¥
= 2 @ |
! |
L elements /
4/1/2003 8:57 AM Sequences 4

Queue with a Singly Linked List

4 We can implement a queue with a singly linked list
= The front element is stored at the first node
= The rear element is stored at the last node
% The space used is O(n) and each operation of the

Queue ADT takes O(1) time P
(nodes \\3
i DI o ENIES e K I e KT S
4 y Y

v i

2. |

|

g B2 4
elements /

4/1/2003 8:57 AM Sequences 5

Position ADT

4 The Position ADT models the notion of place
within a data structure where a single object
is stored

4 A special null position refers to no object.

Positions provide a unified view of diverse
ways of storing data, such as

= a cell of an array
= a node of a linked list
4 Member functions:
= Object& element(): returns the element stored at
this position
= bool isNull(): returns true if this is a null position

4/1/2003 8:57 AM Sequences 6

List ADT

% The List ADT models a Accessor methods:

sequence of positions = first(), last()

storing arbitrary objects = before(p), after(p)
@ It establishes a # Update methods:

before/after relation = replaceElement(p, 0),

between positions swapElements(p, q)

4 Generic methods: :E:Lttzgf;r(‘;@é)OL
® size(), ISEmpty() insertFirst(o)’ ,
4 Query methods: insertLast(o)

= isFirst(p), isLast(p) remove(p)

4/1/2003 8:57 AM Sequences 7

Doubly Linked List

‘ # A doubly linked list provides a natural
implementation of the List ADT

|
|
|
% Nodes implement Position and store: i
|
|
|
|

/ \
\

= element

= link to the previous node

= link to the next node e
Special trailer and header nodes

|
|
|
|
|
|
|
|
|
|
|
|
|

header | nodes/positions | trailer

E e EE B L R

N elements
4/1/2003 8:57 AM Sequences 8

Insertion

% We visualize operation insertAfter(p, X), which returns position q

p
I S 2 a3 3 e e A P N
S‘A B (‘C

p q
6 S 23 Y 5 S 23 2 S 23 2 S 23 2 K S 2
‘A ‘B X \c
4/1/2003 8:57 AM Sequences 9

Deletion

| # We visualize remove(p), where p = last()

B@|<|@|f|@|y|@|d

A B C

[S 2 1 K S 2 P K S 2 T
\aA B \

TS ANES A NGNS NGNS
\a B \c

4/1/2003 8:57 AM Sequences 10

Performance

#In the implementation of the List ADT

by means of a doubly linked list

= The space used by a list with n elements is
O(n)

= The space used by each position of the list
is O(1)

= All the operations of the List ADT run in
0O(1) time

= Operation element() of the
Position ADT runs in O(1) time

4/1/2003 8:57 AM Sequences 11

‘Sequence ADT

The Sequence ADT is the 4 List-based methods:

union of the Vector and = first(), last(),
List ADTs before(p), after(p),
Elements accessed by replaceElement(p, o),
« Rank, or swapElements(p, q),
« Position @nsertBefore(p, 0),
Generic methods: :Ezz:ttﬁ,frt;r((o% %
w size(), isEmpty() insertLast(o),
Vector-based methods: remove(p)
. eierlnAtRank(rIZ, 4 Bridge methods:
{ggeﬁgsr?l?(rfréf), = atRank(r), rankOf(p)
removeAtRank(r)

4/1/2003 8:57 AM Sequences 12

Applications of Sequences

The Sequence ADT is a basic, general-
purpose, data structure for storing an ordered
collection of elements

Direct applications:

= Generic replacement for stack, queue, vector, or
list
» small database (e.g., address book)

Indirect applications:

= Building block of more complex data structures

4/1/2003 8:57 AM Sequences 13

% We use a
circular array
storing
positions

A position
object stores:

= Element
= Rank

4@ Indices fand /
keep track of

‘Array-based Implementation

positions

\
|
|
)

first and last
positions s | |

JU NN

f 1

4/1/2003 8:57 AM Sequences 14

‘Sequence Implementations

Operation Array List
size, isEmpty 1 1
atRank, rankOf, elemAtRank 1 n
first, last, before, after 1 1
replaceElement, swapElements 1 1
replaceAtRank 1 n
insertAtRank, removeAtRank n n
insertFirst, insertLast 1 1
insertAfter, insertBefore n 1
remove n 1
4/1/2003 8:57 AM Sequences 15

Iterators

@ An iterator abstracts the
process of scanning through
a collection of elements

®

ADT:
= boolean hasNext()
= object next()
= reset()

Extends the concept of
position by adding a traversal
capability

May be implemented with an
array or singly linked list

Methods of the ObjectIterator

An iterator is typically
associated with an another
data structure

4 We can augment the Stack,
Queue, Vector, List and

Sequence ADTs with method:

= ObjectIterator elements()
4 Two notions of iterator:
= snapshot: freezes the
contents of the data
structure at a given time
= dynamic: follows changes to
the data structure

4/1/2003 8:57 AM Sequences 16

