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Outline and Reading

#Singly linked list

#Position ADT and List ADT (§5.2.1)

#Doubly linked list (§ 5.2.3)

#Sequence ADT (8§5.3.1)

#Implementations of the sequence ADT
(85.3.3)

#Iterators (§5.5)
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‘Singly Linked List

@ A singly linked list is a

concrete data structure { next |
consisting of a sequence | 3
of nodes |
# Each node stores |
= element 1\\ elem node /;

= link to the next node B R i
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‘Stack with a Singly Linked List

# We can implement a stack with a singly linked list

% The top element is stored at the first node of the list

4 The space used is O(n) and each operation of the
Stack ADT takes O(1) time
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Queue with a Singly Linked List

4 We can implement a queue with a singly linked list
= The front element is stored at the first node
= The rear element is stored at the last node
% The space used is O(n) and each operation of the

Queue ADT takes O(1) time P
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Position ADT

4 The Position ADT models the notion of place
within a data structure where a single object
is stored

4 A special null position refers to no object.

# Positions provide a unified view of diverse
ways of storing data, such as

= a cell of an array
= a node of a linked list
4 Member functions:
= Object& element(): returns the element stored at
this position
= bool isNull(): returns true if this is a null position
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List ADT

% The List ADT models a Accessor methods:

sequence of positions = first(), last()

storing arbitrary objects = before(p), after(p)
@ It establishes a # Update methods:

before/after relation = replaceElement(p, 0),

between positions swapElements(p, q)

4 Generic methods: :E:Lttzgf;r(‘;@é )OL
® size(), ISEmpty() insertFirst(o)’ ,
4 Query methods: insertLast(o)

= isFirst(p), isLast(p) remove(p)
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Doubly Linked List

‘ # A doubly linked list provides a natural
implementation of the List ADT
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% Nodes implement Position and store: i
|
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= element

= link to the previous node

= link to the next node e
# Special trailer and header nodes
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Insertion

% We visualize operation insertAfter(p, X), which returns position q
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Deletion

| # We visualize remove(p), where p = last()
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Performance

#In the implementation of the List ADT

by means of a doubly linked list

= The space used by a list with n elements is
O(n)

= The space used by each position of the list
is O(1)

= All the operations of the List ADT run in
0O(1) time

= Operation element() of the
Position ADT runs in O(1) time

4/1/2003 8:57 AM Sequences 11

‘Sequence ADT

# The Sequence ADT is the 4 List-based methods:

union of the Vector and = first(), last(),
List ADTs before(p), after(p),
# Elements accessed by replaceElement(p, o),
« Rank, or swapElements(p, q),
« Position @nsertBefore(p, 0),
# Generic methods: :Ezz:ttﬁ,frt;r((o% %
w size(), isEmpty() insertLast(o),
# Vector-based methods: remove(p)
. eierlnAtRank(rIZ, 4 Bridge methods:
{ggeﬁgsr?l?(rfréf), = atRank(r), rankOf(p)
removeAtRank(r)
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Applications of Sequences

# The Sequence ADT is a basic, general-
purpose, data structure for storing an ordered
collection of elements

# Direct applications:

= Generic replacement for stack, queue, vector, or
list
» small database (e.g., address book)

# Indirect applications:

= Building block of more complex data structures
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% We use a
circular array
storing
positions

# A position
object stores:

= Element
= Rank

4@ Indices fand /
keep track of

‘Array-based Implementation

positions
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‘Sequence Implementations

Operation Array List
size, isEmpty 1 1
atRank, rankOf, elemAtRank 1 n
first, last, before, after 1 1
replaceElement, swapElements 1 1
replaceAtRank 1 n
insertAtRank, removeAtRank n n
insertFirst, insertLast 1 1
insertAfter, insertBefore n 1
remove n 1
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Iterators

@ An iterator abstracts the
process of scanning through
a collection of elements

®

ADT:
= boolean hasNext()
= object next()
= reset()

# Extends the concept of
position by adding a traversal
capability

# May be implemented with an
array or singly linked list

Methods of the ObjectIterator

# An iterator is typically
associated with an another
data structure

4 We can augment the Stack,
Queue, Vector, List and

Sequence ADTs with method:

= ObjectIterator elements()
4 Two notions of iterator:
= snapshot: freezes the
contents of the data
structure at a given time
= dynamic: follows changes to
the data structure
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