Bucket-Sort and Radix-Sort

REREREEEEE
01234546 7289

Bucket-Sort and Radix-Sort 1

Bucket-Sort (§10.5.1)

Let be S be a sequence of n Algorithm bucketSort(S, N)
(keyr element) items with keys Input sequence S of (key, element)
in the range [0, N - 1] items with keys in the range
Bucket-sort uses the keys as [0,N-1]
indices into an auxiliary array B Output sequence § sorted by
of sequences (buckets) increasing keys
Phase 1: Empty sequence by B « array of N empty sequences
moving each item (k, o) into its while —S.isEmpty()
bucket B[k] S« S.first()
Phase 2: For i=0, ..., N—1, move (k, 0) < S.remove(f)
the items of bucket BIi] to the Blkl.insertLast((k, 0))
end of sequence §

fori<Oto N1

. while —B[i].isEmpty()
= Phase 1 takes O(n) time e Blil.first()

= Phase 2 takes O(n + N) time (k, 0) < Blil.remove(f)
Bucket-sort takes O(n + N) time S.insertLast((k, 0))

*

Analysis:

Bucket-Sort and Radix-Sort 2

Blo[t[o]t]o]o]o]i[o]o]
o 1 2 3 4 5 6 7 8 9
ﬂPhaseZ

Bucket-Sort and Radix-Sort 3

Properties and Extensions

Key-type Property Extensions

= The keys are used as = Integer keys in the range [a, b]
indices into an array * Putitem (,) into bucket
and cannot be arbitrary Blk-a]
objects = String keys from a set D of
No ext | t possible strings, where D has

= No external comparator constant size (e.g., names of

4 Stable Sort Property the 50 U.S. states)
« The relative order of + Sort D and compute the rank

r(k) of each string k of D in

any two items with the the sorted sequence
same key is preserved + Put item (k, o) into bucket
after the execution of Blr(k))

the algorithm

Bucket-Sort and Radix-Sort 4

Lexicographic Order

A d-tuple is a sequence of d keys (k,, k,, ..., k,;), where

key k; is said to be the i-th dimension of the tuple
@ Example:

= The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively

defined as follows

(61, X5, 000 X) < (V1 D25 w00 V)
=4
X <PV X =PA (X, e, Xg) < (s oo V)
L.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

Bucket-Sort and Radix-Sort 5

Lexicographic-Sort

Let C, be the comparator Algorithm lexicographicSort(S)
that compares two tuples by Input sequence S of d-tuples
their i-th dimension Output sequence S sorted in
Let stableSort(S, C) be a lexicographic order
stable sorting algorithm that
uses comparator C for i < d downto |
Lexicographic-sort sorts a stableSort(S, C))
sequence of d-tuples in
lexicographic order by .
executing d times algorithm Example:
stableSort, one per (7:46) (5.1.5) (24,6) 2, 1.4) 3,2, 4)
dimension

Lexicographic-sort runs in @ LHG2HGL) (46 246)

O(dT(n)) time, where T(n) is (2,1,4) (5,1,5) (3, 2, 4) (7.4.6) (2.4.6)
the running time of
stableSort (2,1,4)(2,4,6) (3,2,4) (5,1,5) (7,4,6)

Bucket-Sort and Radix-Sort 6

‘Radix-Sort (§10.5.2)

Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm
in each dimension
Radix-sort is applicable
to tuples where the

W

keys in each dimension i

are integers in the
range [0, N - 1]
Radix-sort runs in time
Od(n+N))

&

i
#ﬁ®

##ﬁ]

Algorithm radixSort(S, N)

Input sequence § of d-tuples such
that (0, ..., 0) < (x, ..., x,) and
Xp e x)<(N=1,..,N=1)
for each tuple (x,, ..., x,) in §

Output sequence S sorted in
lexicographic order

for i < d downto |
bucketSort(S, N)

Bucket-Sort and Radix-Sort 7

Radix-Sort for

_Binary Numbers

Consider a sequence of n

b-bit integers
X=X, _| e XX

4 We represent each element
as a b-tuple of integers in
the range [0, 1] and apply
radix-sort with N =2

% This application of the
radix-sort algorithm runs in
O(bn) time

For example, we can sort a
sequence of 32-bit integers
in linear time

& Ch

Algorithm binaryRadixSort(S)
Input sequence S of h-bit
integers
Output sequence S sorted
replace each element x
of S with the item (0, x)
fori<Otoh—1
replace the key k of
each item (&, x) of §
with bit x; of x
bucketSor«(S, 2)

Bucket-Sort and Radix-Sort 8

Bucket-Sort and Radix-Sort 9

