
Priority Queues 4/1/2003 8:51 AM

1

4/1/2003 8:51 AM Priority Queues 1

Priority Queues

$118IBM400Buy
$119IBM500Buy

IBM
IBM

$120300Sell
$122100Sell

4/1/2003 8:51 AM Priority Queues 2

Outline and Reading

PriorityQueue ADT (§7.1)
Total order relation (§7.1.1)
Comparator ADT (§7.1.4)
Sorting with a priority queue (§7.1.2)
Selection-sort (§7.2.3)
Insertion-sort (§7.2.3)

4/1/2003 8:51 AM Priority Queues 3

Priority Queue ADT

A priority queue stores a
collection of items
An item is a pair
(key, element)
Main methods of the Priority
Queue ADT

insertItem(k, o)
inserts an item with key k
and element o
removeMin()
removes the item with the
smallest key

Additional methods
minKey(k, o)
returns, but does not
remove, the smallest key of
an item
minElement()
returns, but does not
remove, the element of an
item with smallest key
size(), isEmpty()

Applications:
Standby flyers
Auctions
Stock market

4/1/2003 8:51 AM Priority Queues 4

Total Order Relation

Keys in a priority
queue can be
arbitrary objects
on which an order
is defined
Two distinct items
in a priority queue
can have the
same key

Mathematical concept
of total order relation ≤

Reflexive property:
x ≤ x
Antisymmetric property:
x ≤ y ∧ y ≤ x ⇒ x = y
Transitive property:
x ≤ y ∧ y ≤ z ⇒ x ≤ z

4/1/2003 8:51 AM Priority Queues 5

Comparator ADT
A comparator encapsulates the action of comparing
two objects according to a given total order
relation
A generic priority queue uses a comparator as a
template argument, to define the comparison
function (<,=,>)
The comparator is external to the keys being
compared. Thus, the same objects can be sorted
in different ways by using different comparators.
When the priority queue needs to compare two
keys, it uses its comparator

4/1/2003 8:51 AM Priority Queues 6

Using Comparators in C++
A comparator class overloads
the “()” operator with a
comparison function.
Example: Compare two points
in the plane lexicographically.

class LexCompare {
public:

int operator()(Point a, Point b) {
if (a.x < b.x) return –1
else if (a.x > b.x) return +1
else if (a.y < b.y) return –1
else if (a.y > b.y) return +1
else return 0;

}
};

To use the comparator,
define an object of this type,
and invoke it using its “()”
operator:
Example of usage:

Point p(2.3, 4.5);
Point q(1.7, 7.3);
LexCompare lexCompare;

if (lexCompare(p, q) < 0)
cout << “p less than q”;

else if (lexCompare(p, q) == 0)
cout << “p equals q”;

else if (lexCompare(p, q) > 0)
cout << “p greater than q”;

Priority Queues 4/1/2003 8:51 AM

2

4/1/2003 8:51 AM Priority Queues 7

Sorting with a Priority Queue
We can use a priority
queue to sort a set of
comparable elements
1. Insert the elements one

by one with a series of
insertItem(e, e)
operations

2. Remove the elements in
sorted order with a series
of removeMin()
operations

The running time of this
sorting method depends on
the priority queue
implementation

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in
increasing order according to C
P ← priority queue with

comparator C
while !S.isEmpty ()

e ← S.remove (S. first ())
P.insertItem(e, e)

while !P.isEmpty()
e ← P.minElement()
P.removeMin()
S.insertLast(e)

4/1/2003 8:51 AM Priority Queues 8

Sequence-based Priority Queue
Implementation with an
unsorted sequence

Store the items of the
priority queue in a list-based
sequence, in arbitrary order

Performance:
insertItem takes O(1) time
since we can insert the item
at the beginning or end of
the sequence
removeMin, minKey and
minElement take O(n) time
since we have to traverse
the entire sequence to find
the smallest key

Implementation with a
sorted sequence

Store the items of the
priority queue in a
sequence, sorted by key

Performance:
insertItem takes O(n) time
since we have to find the
place where to insert the
item
removeMin, minKey and
minElement take O(1) time
since the smallest key is at
the beginning of the
sequence

4/1/2003 8:51 AM Priority Queues 9

Selection-Sort

Selection-sort is the variation of PQ-sort where the
priority queue is implemented with an unsorted
sequence
Running time of Selection-sort:
1. Inserting the elements into the priority queue with n

insertItem operations takes O(n) time
2. Removing the elements in sorted order from the priority

queue with n removeMin operations takes time
proportional to

1 + 2 + …+ n
Selection-sort runs in O(n2) time

4/1/2003 8:51 AM Priority Queues 10

Insertion-Sort
Insertion-sort is the variation of PQ-sort where the
priority queue is implemented with a sorted
sequence
Running time of Insertion-sort:

1. Inserting the elements into the priority queue with n
insertItem operations takes time proportional to

1 + 2 + …+ n
2. Removing the elements in sorted order from the priority

queue with a series of n removeMin operations takes
O(n) time

Insertion-sort runs in O(n2) time

4/1/2003 8:51 AM Priority Queues 11

In-place Insertion-sort
Instead of using an
external data structure,
we can implement
selection-sort and
insertion-sort in-place
A portion of the input
sequence itself serves as
the priority queue
For in-place insertion-sort

We keep sorted the initial
portion of the sequence
We can use
swapElements instead of
modifying the sequence

5 4 2 3 1

5 4 2 3 1

4 5 2 3 1

2 4 5 3 1

2 3 4 5 1

1 2 3 4 5

1 2 3 4 5

