Heaps and Priority Queues

Heaps and Priority Queues 1

Priority Queue
. ADT (§7.1) g

URGE

& A priority queue stores a # Additional methods

collection of items = minKey(k, 0)
returns, but does not

An item is a pair remove, the smallest key of
(key, element) an item

4 Main methods of the Priority = minElement()
Queue ADT returns, but does not

remove, the element of an
item with smallest key

= size(), isEmpty()

= insertItem(k, o)

inserts an item with key k

and element o Y
) 4 Applications:

removeMin() Standby i

removes the item with the = Standby flyers

smallest key = Auctions
= Stock market

Heaps and Priority Queues 2

‘Total Order Relation

#Keys in a priority 4 Mathematical concept of
queue can be total order relation <
arbitrary objects = Reflexive property:
on which an order x<x
is defined = Antisymmetric property:

4 Two distinct items =~ XSYAYsx=x=y
in a priority queue " Transitive property:
can have the XEYAPETZ XL
same key

Heaps and Priority Queues 3

,Comparator ADT (§7.1.4) E ;

A comparator encapsulates the action of comparlng
two objects according to a given total order
relation

A generic priority queue uses a comparator as a
template argument, to define the comparison
function (<,=,>)

% The comparator is external to the keys being
compared. Thus, the same objects can be sorted
in different ways by using different comparators.

% When the priority queue needs to compare two
keys, it uses its comparator

Heaps and Priority Queues 4

Using Comparators in C++ B\

A comparator class overloads # To use the comparator,

the “()” operator with a define an object of this type,

comparison function. and invoke it using its “()”
Example: Compare two points operator:

in the plane lexicographically. # Example of usage:

class LexCompare { Point pEZ.3, 4.5;;

public: Point q(1.7, 7.3);

int operator()(Point a, Point b) { LexCompare lexCompare;

if (a.x < b.x) return =1

else if (a.x > b.x) return +1 if (lexCompare(p, g) < 0)

4 t << “p less than q”;
else if (a.y < b.y) return -1 caul
else if (a.y > b.y) return +1 e|S§OILt(|iX<COB’\galI:|eaﬁp, g) 0)
3 else return 0; else if (lexCompare(p, %)
¥, cout << “p greater than q

Heaps and Priority Queues 5

Sorting with a
Priority Queue (§7.1.2)

4 \We can use a priority Algorithm PQ-Sort(S, C)
queue to sort a set of Input sequence S comparator C
comparable elements for the elements of §
® Insert the elements one Output sequence S sorted in
by one with a series of increasing order according to C

insertItem(e, €) P « priority queue with
operations comparator C
B Remove the elements in while !S.isEmpty ()
g?rrfﬁ,] g\l;gﬁlri:&th a senes e < S.remove (S. first ()
operations P.insertltem(e, e)
The running time of this while !P.isEmpty()
sorting method depends on e « P.minElement()
the priority queue P.removeMin()
implementation S.insertLast(e)

Heaps and Priority Queues 6

Sequence-based Priority Queue

Implementation with an 4 Implementation with a
unsorted list sorted list
@000 O—2—0CB—0E—06
4% Performance: 4 Performance:
= insertItem takes O(1) time = insertltem takes O(n) time
since we can insert the item since we have to find the
at the beginning or end of place where to insert the
the sequence item
= removeMin, minKey and = removeMin, minKey and

minElement take O(n) time minElement take O(1) time
since we have to traverse since the smallest key is at
the entire sequence to find the beginning of the

the smallest key sequence

Heaps and Priority Queues 7

‘Selection-Sort

Selection-sort is the variation of PQ-sort where the
priority queue is implemented with an unsorted

sequence

4 Running time of Selection-sort:
B Inserting the elements into the priority queue with »
insertltem operations takes O(n) time
B Removing the elements in sorted order from the priority
queue with n removeMin operations takes time
proportional to
1+2+..+n
4 Selection-sort runs in O(n?) time

Heaps and Priority Queues 8

Insertion-Sort | /‘ '/

4 Insertion-sort is the variation of PQ-sort Where the
priority queue is implemented with a sorted

sequence I I I I I

4 Running time of Insertion-sort:
m Inserting the elements into the priority queue with n
insertltem operations takes time proportional to
1+2+..4+n
B Removing the elements in sorted order from the priority
queue with a series of n removeMin operations takes
O(n) time
Insertion-sort runs in O(n?) time

Heaps and Priority Queues 9

What is a heap? (§7.3.1) ,,m

0 A heap is a binary tree # The last node of a heap
storing keys at its internal is the rightmost internal
nodes and satisfying the node of depth 7 — 1

following properties:
= Heap-Order: for every
internal node v other than
the root,
key(v) > key(parent(v))
= Complete Binary Tree: let &
be the height of the heap
+ fori=0,...,h- 1, there are
27 nodes of depth i
+ at depth & — 1, the internal
nodes are to the left of the
external nodes

last node

Heaps and Priority Queues 10

‘Height of a Heap

4 Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)
= Let & be the height of a heap storing n keys
= Since there are 2/ keys at depth i = 0, ..., h — 2 and at least one key
atdepthh—1, wehaven>1+2+4+.. +212 +1
= Thus, n>2"1,ie, h<logn+1

depth keys
0 1

Heaps and Priority Queues 11

‘Heaps and Priority Queues

4 We can use a heap to implement a priority queue

We store a (key, element) item at each internal node
® We keep track of the position of the last node

4 For simplicity, we show only the keys in the pictures

Heaps and Priority Queues 12

Insertion into a -

Heap (§7.3.2) ’s‘il |

4 Method insertItem of the
priority queue ADT
corresponds to the
insertion of a key & to
the heap

4% The insertion algorithm
consists of three steps
= Find the insertion node z
(the new last node)
= Store k at z and expand z
into an internal node
= Restore the heap-order
property (discussed next)

Heaps and Priority Queues 13

‘Upheap

After the insertion of a new key k, the heap-order property may be
violated

Algorithm upheap restores the heap-order property by swapping &
along an upward path from the insertion node

Upheap terminates when the key & reaches the root or a node
whose parent has a key smaller than or equal to &
Since a heap has height O(log n), upheap runs in O(log n) time

@ & @

®

Heaps and Priority Queues 14

Removal from a Heap (§7.3.2)

4 Method removeMin of
the priority queue ADT
corresponds to the
removal of the root key
from the heap

The removal algorithm
consists of three steps
= Replace the root key with
the key of the last node w
= Compress w and its
children into a leaf
= Restore the heap-order
property (discussed next)

Heaps and Priority Queues 15

‘Downheap

4 After replacing the root key with the key & of the last node, the
heap-order property may be violated

Algorithm downheap restores the heap-order property by

swapping key k along a downward path from the root

4 Upheap terminates when key & reaches a leaf or a node whose
children have keys greater than or equal to k

4 Since a heap has height O(log n), downheap runs in O(log n) time

&

Heaps and Priority Queues 16

Updating the Last Node

The insertion node can be found by traversing a path of O(log n)
nodes
= Go up until a left child or the root is reached
= If a left child is reached, go to the right child
= Go down left until a leaf is reached
Similar algorithm for updating the last node after a removal

Heaps and Priority Queues 17

Heap-Sort (§7.3.4)

4 Consider a priority
queue with n items
implemented by means

4 Using a heap-based
priority queue, we can
sort a sequence of n

of a heap elements in O(n log n)
= the space used is O(n) time
= methods insertitem and 4 The resulting algorithm
removeMin take O(log n) is called heap-sort
time

4 Heap-sort is much
faster than quadratic
sorting algorithms, such
as insertion-sort and

selection-sort
Heaps and Priority Queues 18

= methods size, isEmpty,
minKey, and minElement
take time O(1) time

Vector-based Heap
Implementation (§7.3.3)

4 We can represent a heap with n
keys by means of a vector of
length n + 1

For the node at rank i

= the left child is at rank 2i

= the right child is at rank 2i + 1
Links between nodes are not
explicitly stored
The leaves are not represented
The cell of at rank 0 is not used
Operation insertItem corresponds
to inserting at rank n + 1 o 1 2 3 4 5
Operation removeMin corresponds
to removing at rank »
Yields in-place heap-sort

@

& @

[2fs]efo]7]

*®

&

Heaps and Priority Queues 19

Merging Two Heaps

4 We are given two two
heaps and a key k

We create a new heap
with the root node
storing k£ and with the
two heaps as subtrees

#® We perform downheap
to restore the heap-
order property

Heaps and Priority Queues

Bottom-up Heap
Construction (§7.3.5)

% We can construct a heap
storing n given keys in
using a bottom-up
construction with log n

phases
In phase i, pairs of ﬂ
heaps with 2/ -1 keys are
merged into heaps with
2i1—1 keys

Heaps and Priority Queues 21

l’ \j

ﬂﬂ&ﬁ

)

o e

)

P PN

P

2

\T\)

AN

£

Heaps and Priority Queues

'Example (contd.)

()

Heaps and Priority Queues 23

'Example (contd.)

)

Heaps and Priority Queues

'Example (end)

Heaps and Priority Queues

“Analysis

‘ # We visualize the worst-case time of a downheap with a proxy path

that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)

Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)

4 Thus, bottom-up heap construction runs in O(n) time

Bottom-up heap construction is faster than » successive insertions
and speeds up the first phase of heap-sort

Heaps and Priority Queues 26

