'Elementary Data _
Structures

Stacks, Queues, & Lists
Amortized analysis
Trees

“The Stack ADT (§4.2.1) ‘B

@ The Stack ADT stores
arbitrary objects
Insertions and deletions
follow the last-in first-out
scheme = top(): returns the last
. . inserted element without
Think of a spring-loaded removing it
plate dispenser
4 Main stack operations:
= push(Object o): inserts
element o

= pop(): removes and returns
the last inserted element

% Auxiliary stack
operations:

size(): returns the
number of elements
stored

isEmpty(): a Boolean
value indicating whether
no elements are stored

Elementary Data Structures 2

Applications of Stacks 'G i

#Direct applications

= Page-visited history in a Web browser

= Undo sequence in a text editor

= Chain of method calls in the Java Virtual

Machine or C++ runtime environment

#Indirect applications

= Auxiliary data structure for algorithms

= Component of other data structures

Elementary Data Structures 3

Array-based Stack (§4.2.2)

Algorithm pop():
if isEmpty() then
throw EmptyStackException
else

A simple way of
implementing the
g:?acylf ADT uses an fet_1

+1

We add elements refum Ste+ 1]
from left to right Algorithm push(o)

& A variable t keeps if t=S.length — 1 then
track of the index of throw FullStackException

the top element else
(size is t+1) tt+1
S[f] <o
sLITTTTTIN - SNEITTTTT]
012 t
Elementary Data Structures 4

Growable Array-based
Stack

#1In a push operation, when
the array is full, instead of

throwing an exception, we | Algorithm push(o)
can replace the array with | if7==S.length — 1 then
a |arger one A < new array of
S1z¢ ...
@Ia-lrc;\;v Ietl)gg?e should the new fori < 0tozdo
Yy be: Ali] < STi]
= incremental strategy: S A
increase the size by a fet+
constant ¢ S[f] <o
= doubling strategy: double
the size

Elementary Data Structures 5

Comparison of the o
 Strategies

We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
push operations

We assume that we start with an empty
stack represented by an array of size 1

4 We call amortized time of a push operation
the average time taken by a push over the
series of operations, i.e., T(n)/n

Elementary Data Structures 6

Analysis of the
Incremental Strategy

4 We replace the array & = n/c times

The total time T(n) of a series of n push
operations is proportional to

n+c+2c+3ctdc+...+kec=
nte(l+2+3+... +k) =
n + ck(k+1)/2
® Since ¢ is a constant, T(n) is O(n + k?), i.e.,
0(n?)
The amortized time of a push operation is O(n)

Elementary Data Structures 7

Direct Analysis of the
_Doubling Strategy

We replace the array k =log, n
times

The total time 7(n) of a series
of n push operations is
proportional to

n+1+2+4+8+ . +2k=
n+2k1 -1 =2p-1

#® T(n) is O(n)

The amortized time of a push
operation is O(1)

geometric series

Elementary Data Structures 8

Accounting Method Analysis
_of the Doubling Strategy

4 The accounting method determines the amortized
running time with a system of credits and debits

4 We view a computer as a coin-operated device requiring
1 cyber-dollar for a constant amount of computing.

= We set up a scheme for charging operations. This
is known as an amortization scheme.

= The scheme must give us always enough money to
pay for the actual cost of the operation.

= The total cost of the series of operations is no more
than the total amount charged.

4 (amortized time) < (total $ charged) / (# operations)

Elementary Data Structures 9

Amortization Scheme for
the Doubling Strategy

4 Consider again the & phases, where each phase consisting of twice
as many pushes as the one before.

At the end of a phase we must have saved enough to pay for the
array-growing push of the next phase.

At the end of phase /we want to have saved /cyber-dollars, to pay
for the array growth for the beginning of the next phase.

POEE ®

OO ®
i —> [OIMETT T T T T 77T
01234567 01234567809101112131415

o We charge $3 for a push. The $2 saved for a regular push are
“stored” in the second half of the array. Thus, we will have
2(j/2)=/ cyber-dollars saved at then end of phase /.
o Therefore, each push runs in (1) amortized time; 77 pushes run
in O(n) time.

Elementary Data Structures 10

‘The Queue ADT (84.3.1)

@ The Queue ADT stores # Auxiliary queue operations:
arbitrary objects = front(): returns the element

@ Insertions and deletions follow t the front without removing
the first-in first-out scheme it

Insertions are at the rear of = size(): returns the number of

the queue and removals are elements stored
at the front of the queue isEmpty(): returns a Boolean

)) value indicating whether no

4 Main queue operations: elements are stored
= enqueue(object 0): inserts :

element o at the end of the * Exceptlon_s i
queue = Attempting the execution of
dequeue(): removes and ganut\e}ueug'l‘ltfer?ﬁo?/\;‘szr;
returns the element at the s pt q o
front of the queue mptyQueueException

Elementary Data Structures 11

Applications of Queues

#Direct applications
= Waiting lines
= Access to shared resources (e.g., printer)
= Multiprogramming
#Indirect applications
= Auxiliary data structure for algorithms
= Component of other data structures

Elementary Data Structures 12

‘Singly Linked List

4 A singly linked list is a
concrete data structure
consisting of a sequence
of nodes

4 Each node stores

= element
= link to the next node

L Lt 11

[y [

1

B C

Elementary Data Structures 13

O +—

Queue with a Singly Linked List

4 We can implement a queue with a singly linked list
= The front element is stored at the first node
= The rear element is stored at the last node

4 The space used is O(n) and each operation of the

Queue ADT takes O(1) time p
{“nodes \\3
i K1 I e ENIES e K S o KA S
(3 : -
i\ @ @ elem@/
Elementary Data Structures 14

List ADT (§5.2.2)

The List ADT models a
sequence of positions
storing arbitrary objects

4 It allows for insertion
and removal in the
“middle”

Query methods:

= isFirst(p), isLast(p)

Accessor methods:

= first(), last()
= before(p), after(p)

Update methods:

replaceElement(p, o),
swapElements(p, q)

insertBefore(p, 0),
insertAfter(p, o),
insertFirst(o),
insertLast(o)
remove(p)

Elementary Data Structures 15

‘Doubly Linked List

‘ 4 A doubly linked list provides a natural ’/ﬁprev next

/
implementation of the List ADT i

|

Nodes implement Position and store: |
|

|

|

|

= element
= link to the previous node L elem node
= link to the next node S -7
Special trailer and header nodes
header | nodes/positions | trailer

mlcl“@»l{l@l(l@l{l’@

® &
\\ k‘g eles,i

Elementary Data Structures 16

:,Trees (§6.1)

‘Tree ADT (§6.1.2)

We use positions to abstract ~ # Query methods:

In computer science, a
tree is an abstract model
of a hierarchical
structure

4 A tree consists of nodes
with a parent-child
relation

Applications:

= Organization charts
= File systems i
Europe Asia Canada
o, S 0 D
environments

Computers"R"Us

Manufacturing

[International] [Laptops] [Desktops]

Elementary Data Structures 17

nodes
@ Generic methods:
= integer size()
= boolean isEmpty() &
= objectlterator elements()
= positionIterator positions()
@ Accessor methods: L
= position root()
= position parent(p)
= positionIterator children(p)

= boolean isInternal(p)

= boolean isExternal(p)

= boolean isRoot(p)
Update methods:

= swapElements(p, q)

= object replaceElement(p, 0)
Additional update methods
may be defined by data
structures implementing the
Tree ADT

Elementary Data Structures 18

Preorder Traversal (§6.2.3) 7|

® A trayersal visits the nodes of a Algorithm preOrder(v)

tree in a systematic manner Ll

. Visit(v)

% In a preorder traversal, a node is X

visited before its descendants for each child w of v
Application: print a structured preorder (w)

document

1
2 9

5

(2 Methoas)

T BB ;s
P 2.1 Stock 2.2 Ponzi 2.3 Bank

Ciss) () (e

Elementary Data Structures 19

1. Motivations
3
1.1 Greed

[References]

In a postorder traversal, a
node is visited after its

Algorithm postOrder(v)
for each child w of v

descendants
Application: compute space postOrder (w)
used by files in a directory and visit(v)

its subdirectories

homeworks/

2 4
hic.doc hinc.doc DDR.java Stocks.java Robot.java
3K 2K 10K 25K 20K
Elementary Data Structures 20

Amortized Analysis of
‘Tree Traversal

Time taken in preorder or postorder traversal
of an n-node tree is proportional to the sum,
taken over each node v in the tree, of the
time needed for the recursive call for v.
= The call for v costs $(c, + 1), where c, is the

number of children of v
= For the call for v, charge one cyber-dollar to v and
charge one cyber-dollar to each child of v.

= Each node (except the root) gets charged twice:
once for its own call and once for its parent’s call.

= Therefore, traversal time is O(n).
Elementary Data Structures 21

‘Binary Trees (86.3)

A binary tree is a tree with the @ Applications:
following properties:
= Each internal node has two
children
= The children of a node are an
ordered pair
We call the children of an internal
node left child and right child
@ Alternative recursive definition: a
binary tree is either
= a tree consisting of a single node,
or
= a tree whose root has an ordered
pair of children, each of which is a
binary tree

= arithmetic expressions
= decision processes
= searching

Elementary Data Structures 22

Arithmetic Expression Tree

% Binary tree associated with an arithmetic expression
= internal nodes: operators
= external nodes: operands
4 Example: arithmetic expression tree for the
expression (2 x (@—1) + (3 x b))

Elementary Data Structures 23

Decision Tree

4 Binary tree associated with a decision process
= internal nodes: questions with yes/no answer
= external nodes: decisions

4 Example: dining decision

Want a fast meal?

Yes No

[How about coffee?] [On expense account?]

Yes No Yes No
|Starbucks| |In ‘N Out| |Antoine's| |Denny’s|

Elementary Data Structures 24

Properties of Binary Trees

4 Notation 4 Properties:
n number of nodes me=i+1
) gitn;gg 0nfodes i 2o
i number of internal » h<i
nodes h<(n-1)_2
h height e< ok

h>log, e
h2log, (n+1)—1

Elementary Data Structures 25

Inorder Traversal

| & Inan inorder traversal a Algorithm inOrder(v)
node is visited after its left

subtree and before its right if islnternal (v)

subtree inOrder (leftChild (v))
4 Application: draw a binary Visit(v)
tree

if isInternal (v)
inOrder (rightChild (v))

= Xx(v) = inorder rank of v
= y(v) = depth of v 6

Elementary Data Structures 26

'Euler Tour Traversal

Generic traversal of a binary tree
Includes a special cases the preorder, postorder and inorder traversals
Walk around the tree and visit each node three times:

= on the left (preorder)

= from below (inorder)

= on the right (postorder) \ 4

Elementary Data Structures 27

Printing Arithmetic Expressions

Specialization of an inorder Algorithm printExpression(v)

traversal if isInternal (v)
= print operand or operator AL
when visiting node print(()
= print *(” before traversing left ; 7
D btres inOrder (leftChild (v))

= print)" after traversing right print(v.element ())
subtree JPSN
if isInternal (v)
inOrder (rightChild (v))
print ("))

((2x@-1))+ (3 xb))

Elementary Data Structures 28

Linked Data Structure for
Representing Trees (§6.4.3)

: # A node is represented by

an object storing
= Element n@n OLOLO
= Parent node

= Sequence of children
nodes

4 Node objects implement
the Position ADT

Elementary Data Structures 29

Linked Data Structure for
‘Binary Trees (86.4.2)

A node is represented
by an object storing
= Element
= Parent node
= Left child node
= Right child node

¥

Node objects implement [@ * @] l_‘
the Position ADT b b
v
D

Elementary Data Structures 30

Array-Based Representation of
_Binary Trees (§6.4.1)

% nodes are stored in an array

\ !
m let rank(node) be defined as follows:
m rank(root) =1

m if node is the left child of parent(node),
rank(node) = 2*rank(parent(node))

m if node is the right child of parent(node),
rank(node) = 2*rank(parent(node))+1

Elementary Data Structures 31

