Analysis of Algorithms

|

Input Algorithm

An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.

‘Running Time (§3.1)

4 Most algorithms transform O best case

input objects into output moge
objects. 120
4 The running time of an 100

algorithm typically grows
with the input size.
# Average case time is often
difficult to determine.
4 We focus on the worst case »
running time.
= Easier to analyze

= Crucial to applications such as
games, finance and robotics

Running Time
3

[
1000 2000 3000 4000
Input Size

Analysis of Algorithms 2

Experimental Studies (§ 3.1.1)

# \Write a program 2600 "
implementing the 8000 4 :
algorithm 7000 -

% Run the program with 6000 :
inputs of varying size and ésooo i
comp05|t|oq . 2 4000 | o

4# Use a function, like the  F 554, | .
built-in clock() function, to 2000 | -
get an accurate measure o
of the actual running time ~ *°%° ot

0

# Plot the results
Input Size

Analysis of Algorithms 3

‘Limitations of Experiments

@It is necessary to implement the
algorithm, which may be difficult

#Results may not be indicative of the
running time on other inputs not included
in the experiment.

#In order to compare two algorithms, the

same hardware and software
environments must be used

Analysis of Algorithms

‘Theoretical Analysis

#Uses a high-level description of the
algorithm instead of an implementation

#Characterizes running time as a
function of the input size, n.

#Takes into account all possible inputs

#Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment

Analysis of Algorithms 5

Pseudocode (§3.1.2)

# High-level description Example: find max
of an algorithm element of an array

& More_: structured than Algorithm arrayMax(A, n)
English prose Input array A of n integers

# Less detailed than a Output maximum element of 4
program

& Preferred notation for | currentMax < A[0]
describing algorithms | fori<« 1ton —1do

# Hides program design if A[i] > currentMax then
issues currentMax < A[i]

return currentMax

Analysis of Algorithms 6




Pseudocode Details

# Control flow % Method/Function call
= if ... then ... [else ...] var.method (arg [, arg...])
= while ... do ... # Return value
= repeat ... until ... return expression
= for..do.. # Expressions
= Indentation replaces braces «Assignment

4 Method declaration _ S;k:aﬁt;ntgs-:i:é
Algorithm method (arg [, arg...]) (like == in C++)

Input ... n? Superscripts and other
Output ... mathematical

formatting allowed

Analysis of Algorithms 7

The Random Access Machine

(RAM) Model

#ACPU =
4

4 An potentially unbounded
bank of memory cells, -
each of which canholdan ©
arbitrary number or
character

# Memory cells are numbered and accessing
any cell in memory takes unit time.

Analysis of Algorithms 8

Primitive Operations

# Basic computations ;
. # Examples:
performed by an algorithm >
. i = Evaluating an
4 Identifiable in pseudocode expression
4 Largely independent from the Assigning a value
programming language fo.a variable
Indexing into an
% Exact definition not important array
(we will see why later) Calling a method
% Assumed to take a constant 'F;eet;rgéng from
amount of time in the RAM
model

Analysis of Algorithms 9

Counting Primitive

_Operations (§3.4.1)

4% By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
currentMax < A[0] 2
fori« 1ton—1do 2+n

if A[i] > currentMax then 2(n—-1)
currentMax < A[i) 2(n—1)
{ increment counter i } 2(n—-1)
return currentMax 1
Total 7n—1
Analysis of Algorithms 10

'Estimating Running Time %

# Algorithm arrayMax executes 7n — 1 primitive
operations in the worst case. Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

@ Let T(n) be worst-case time of arrayMax. Then

a(Tn—1)<T(n) < b(7Tn—-1)

# Hence, the running time 7(n) is bounded by two

linear functions

Analysis of Algorithms 11

“Growth Rate of Running Time

#Changing the hardware/ software
environment
= Affects T(n) by a constant factor, but
= Does not alter the growth rate of T(n)
#The linear growth rate of the running
time T(n) is an intrinsic property of
algorithm arrayMax

4

Analysis of Algorithms




Growth Rates

" 1E+30
4 Growth rates of 128 e
i . 1E+26 1
functions: 128 T — quadratic
= Linear~n }Egg T —Linear
= Quadratic ~ n? IE+18
= Cubic ~ n’ 3 IE+16
= IE+H4
1E+12
4 In a log-log chart, 1E+10
the slope of the line £
corresponds to the L
growth rate of the .o
fUnCtiOn 1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n
Analysis of Algorithms 13

Constant Factors

1E+26

# The growth rate is  1g+24 {{- - Quadratic
not affected by 1E+22 17— Quadratic
1E+20 1 - - -Linear
= constant factors or  1E+18 {— Linear .
= lower-order terms _ 116 i
= BT .
@ Examples < IE12
= 10224 10%is a linear ““’l;’
function 1E+6 ———1
s 102+ 10%is a 1E+4
quadratic function ~ 1E+2
1E+0 T T T
IE+0  IE+#2  1E+4 1E+6  1E+8  1E+10
n
Analysis of Algorithms 14

Big-Oh Notation (§3.5)

¥ 10,000
4% Given functions f{n) and 30

g(n), we say that fin) is
0O(g(n)) if there are

positive constants "
¢ and n, such that 100

fin) < cg(n) for n>n,
# Example: 2n + 10 is O(n)
m 2n+10<cn

= (c-2)n210 1 10 100 1,000
s n210/(c-2) n )
= Pick ¢=3and ny=10

1,000 = —2n+10

Analysis of Algorithms 15

'Big-Oh Example

1,000,000
. —nn2
@ Example: the function - 100n
. 100,000 H
n?is not O(n) . 10n
2 <
= n’<cn 10,000 +=_—N
s n<c
= The above inequality 1,000
cannot be satisfied
since ¢ must be a 100
constant
10
1
1 10 100 1,000
n
Analysis of Algorithms 16

% 7n-2
7n-2 is O(n)

need ¢ > 0 and n, > 1 such that 7n-2 < cen for n > n,
this is true forc = 7and ny = 1

m3n3 +20n2 + 5
3n3 + 20n? + 5is O(n3)
need ¢ > 0 and n, > 1 such that 3n® + 20n2 + 5 < cen for n > n,
this is true for c = 4 and n, = 21

m3logn + log log n
3 log n + log log n is O(log n)
need ¢ > 0 and n, > 1 such that 3 log n + log log n < celog n for n > n,

this is true for c = 4 and ny = 2
Analysis of Algorithms 17

More Big-Oh Examples Q‘L ;

'Big-Oh and Growth Rate

4 The big-Oh notation gives an upper bound on the
growth rate of a function

# The statement “f(n) is O(g(n))” means that the growth
rate of f{n) is no more than the growth rate of g(n)

4 We can use the big-Oh notation to rank functions
according to their growth rate

fin)is O(g(m)) | g(n)is O(fln))

g(n) grows more Yes No
fln) grows more No Yes
Same growth Yes Yes

Analysis of Algorithms




Big-Oh Rules

# If is f{n) a polynomial of degree d, then f(n) is
on9), i.e.,
1. Drop lower-order terms
». Drop constant factors
4 Use the smallest possible class of functions
= Say “2n is O(n)” instead of “2n is O(n?)"”
@ Use the simplest expression of the class
» Say "3n + 5 is O(n)" instead of “3n + 5 is O(3n)"

Analysis of Algorithms 19

Asymptotic Algorithm Analysis

% The asymptotic analysis of an algorithm determines
the running time in big-Oh notation
% To perform the asymptotic analysis

= We find the worst-case number of primitive operations
executed as a function of the input size

= We express this function with big-Oh notation
4 Example:
» We determine that algorithm arrayMax executes at most
7n — 1 primitive operations
= We say that algorithm arrayMax “runs in O(n) time”
# Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them
when counting primitive operations

Analysis of Algorithms 20

‘Computing Prefix Averages

# We further illustrate

asymptotic analysis with mx .
two algorithms for prefix 30904
averages 25
4 The i-th prefix average of 20 1
an array X is average of the
first (i + 1) elements of X: 15 1
A[i]= (X[0] + X[1] + ... + X[)/G+1) 101
4 Computing the array 4 of 51
prefix averages of another o AL AL L L HL AL
array X has applications to 1 23456 7
financial analysis
Analysis of Algorithms 21

Prefix Averages (Quadratic)

@ The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAveragesI(X, n)
Input array X of n integers
Output array A of prefix averages of X' #operations
A « new array of n integers n
fori<—Oton—1do n
s « X[0] n
forj« 1 toido 1+2+..4+@m-1)
s« 5+ X[j] 1+2+ .. 4+m-1)
Alil«s/(@i+1) n
return A 1
Analysis of Algorithms 22

Arithmetic Progression

# The running time of

prefixAveragesl is
O(1+2+...+n)
# The sum of the first n
integers is n(n+1)/2
= There is a simple visual
proof of this fact
# Thus, algorithm
prefixAverages1 runs in

N W s & 2

—_
I

0(n?) time

Analysis of Algorithms 23

Prefix Averages (Linear)

T # The following algorithm computes prefix averages in

linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations

A « new array of n integers n
s« 0 1
fori< Oton—1do n
s < s+ X[i] n
Alil«<s/(@@+1) n
return A 1

# Algorithm prefixAverages2 runs in O(n) time

Analysis of Algorithms 24




‘Math you need to Review

% Summations (Sec. 1.3.1)
4 Logarithms and Exponents (Sec. 1.3.2)
# properties of logarithms:
logy(xy) = logyx + logpy
log,, (x/y) = logyx - logpy
logyxa = alogyx
logya = log,a/log,b
# properties of exponentials:
alb+o) = gbg ¢
abe = (ab)°
i ab /ac = a0
% Proof techniques (Sec. 1.3.3)  p = gugp
% Basic probability (Sec. 1.3.4)  bc=a g,

Analysis of Algorithms 25

Relatives of Big-Oh

# big-Omega
= f(n) is Q(g(n)) if there is a constant c > 0
and an integer constant n, > 1 such that
f(n) = ceg(n) for n > n,
# big-Theta
= f(n) is ®(g(n)) if there are constants ¢’ > 0 and ¢” > 0 and an
integer constant n, > 1 such that c’sg(n) < f(n) < c”eg(n) for n = n,
4 little-oh
= f(n) is o(g(n)) if, for any constant c > 0, there is an integer
constant n, > 0 such that f(n) < ceg(n) for n > n,
% |ittle-omega
= f(n) is w(g(n)) if, for any constant ¢ > 0, there is an integer
constant n, > 0 such that f(n) > ceg(n) for n > n,

Analysis of Algorithms 26

R

,

Intuition for Asymptotic
.Notation

Big-Oh

= f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
big-Omega

= f(n) is Q(g(n)) if f(n) is asymptotically greater than or equal to g(n)
big-Theta

= f(n) is ©(g(n)) if f(n) is asymptotically equal to g(n)

little-oh

= f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)
little-omega

= f(n) is w(g(n)) if is asymptotically strictly greater than g(n)

Analysis of Algorithms 27

Example Uses of the
_Relatives of Big-Oh

= 5n%is Q(n?)
f(n) is Q(g(n)) if there is a constant ¢ > 0 and an integer constant n, > 1
such that f(n) > ceg(n) for n > n,
letc=5andn,=1
= 5n? is Q(n)
f(n) is Q(g(n)) if there is a constant ¢ > 0 and an integer constant n, > 1
such that f(n) > ceg(n) forn > n,
letc=1andn,=1
= 5n%is @(n)
f(n) is @(g(n)) if, for any constant ¢ > 0, there is an integer constant n, >
0 such that f(n) > ceg(n) forn > n,
need 5n? > con; — given c, the n,, that satisfies this is ny > ¢/5> 0

Analysis of Algorithms 28




