
16
Web Programming

with CGI

Objectives
• To understand the Common Gateway Interface (CGI)

protocol.
• To understand the Hypertext Transfer Protocol

(HTTP) and to use HTTP headers.
• To understand a Web server’s functionality.
• To introduce the Apache HTTP Server.
• To request documents from a Web server.
• To implement a simple CGI script.
• To send input to CGI scripts using XHTML forms.
This is the common air that bathes the globe.
Walt Whitman

The longest part of the journey is said to be the passing of the
gate.
Marcus Terentius Varro

Railway termini... are our gates to the glorious and
unknown. Through them we pass out into adventure and
sunshine, to them, alas! we return.
E. M. Forster

There comes a time in a man’s life when to get where he has
to go—if there are no doors or windows—he walks through
a wall.
Bernard Malamud

Chapter 16 Web Programming with CGI 881

16.1 Introduction
With the advent of the World Wide Web, the Internet gained tremendous popularity. This
greatly increased the volume of requests users made for information from Web sites. It be-
came evident that the degree of interactivity between the user and the Web site would be
crucial. The power of the Web resides not only in serving content to users, but also in re-
sponding to requests from users and generating Web content dynamically.

In this chapter, we discuss specialized software—called a Web server—that responds
to client (e.g., Web browser) requests by providing resources (e.g., XHTML1 documents).
For example, when users enter a Uniform Resource Locator (URL) address, such as
www.deitel.com, into a Web browser, they are requesting a specific document from a
Web server. The Web server maps the URL to a file on the server (or to a file on the server’s
network) and returns the requested document to the client. During this interaction, the Web
server and the client communicate through the platform-independent Hypertext Transfer
Protocol (HTTP), a protocol for transferring requests and files over the Internet (i.e.,
between Web servers and Web browsers).

Outline

16.1 Introduction
16.2 HTTP Request Types
16.3 Multi-Tier Architecture
16.4 Accessing Web Servers
16.5 Apache HTTP Server
16.6 Requesting XHTML Documents
16.7 Introduction to CGI
16.8 Simple HTTP Transaction
16.9 Simple CGI Script
16.10 Sending Input to a CGI Script
16.11 Using XHTML Forms to Send Input
16.12 Other Headers
16.13 Case Study: An Interactive Web Page
16.14 Cookies
16.15 Server-Side Files
16.16 Case Study: Shopping Cart
16.17 Internet and Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. The Extensible HyperText Markup Language (XHTML) has replaced the HyperText Markup Lan-
guage (HTML) as the primary way of describing Web content. Readers not familiar with XHTML
should read Appendix E, Introduction to XHTML, before reading this chapter.

882 Web Programming with CGI Chapter 16

Our Web-server discussion introduces the Apache HTTP Server. For illustration pur-
poses, we use Internet Explorer to request documents and, later, to display content returned
from “CGI scripts.”

16.2 HTTP Request Types
HTTP defines several request types (also known as request methods), each of which spec-
ifies how a client makes requests from a server. The two most common are get and post.
These request types retrieve and send client form data from and to a Web server. A form is
an XHTML element that may contain text fields, radio buttons, check boxes and other
graphical user interface components that allow users to enter data into a Web page. Forms
can also contain hidden fields, not exposed as GUI components. A get request is used to
send data to the server. A post request also is used to send data to the server. A get request
sends form data as part of the URL (e.g., www.searchsomething.com/
search?query=userquery). In this fictitious request, the information following the ?
(query=userquery) indicates user-specified input. For example, if the user performs a
search on “Massachusetts,” the last part of the URL would be ?query=Massachu-
setts. A get request limits the query string (e.g., query=Massachusetts) to a pre-
defined number of characters. This limit varies from server to server. If the query string ex-
ceeds this limit, a post request must be used.

Software Engineering Observation 16.1
The data sent in a post request is not part of the URL and cannot be seen by users. Forms
that contain many fields often are submitted via a post request. Sensitive form fields, such as
passwords, usually are sent using this request type. 16.1

An HTTP request often sends data to a server-side form handler that processes the
data. For example, when a user participates in a Web-based survey, the Web server receives
the information specified in the form as part of the request and processes the survey in the
form handler.

Browsers often cache (save on a local disk) Web pages for quick reloading, to reduce
the amount of data that the browser needs to download. However, browsers typically do not
cache the responses to post requests, because subsequent post requests might not contain
the same information. For example, users participating in a Web-based survey may request
the same Web page. Each user’s response changes the overall results of the survey, thus the
information presented in the resulting Web page is different for each request.

Web browsers often cache the server’s responses to get requests. A static Web page, such
as a course syllabus, is cached in the event that the user requests the same resource again.

16.3 Multi-Tier Architecture
A Web server is part of a multi-tier application, sometimes referred to as an n-tier applica-
tion. Multi-tier applications divide functionality into separate tiers (i.e., logical groupings
of functionality). Tiers can be located on the same computer or on separate computers.
Figure 16.1 presents the basic structure of a three-tier application.

The information tier (also called the data tier or the bottom tier) maintains data for the
application. This tier typically stores data in a relational database management system
(RDBMS). For example, a retail store might have a database of product information, such

Chapter 16 Web Programming with CGI 883

as descriptions, prices and quantities in stock. The same database also might contain cus-
tomer information, such as user names for logging into the online store, billing addresses
and credit-card numbers.

The middle tier implements business logic and presentation logic to control interactions
between application clients and application data. The middle tier acts as an intermediary
between data in the information tier and the application clients. The middle-tier controller
logic processes client requests from the top tier (e.g., a request to view a product catalog) and
retrieves data from the database. The middle-tier presentation logic then processes data from
the information tier and presents the content to the client. In Web-based applications, the
middle tier presentation logic typically presents content as XHTML documents.

Business logic in the middle tier enforces business rules and ensures that data is reli-
able before updating the database or presenting data to a user. Business rules dictate how
clients can and cannot access application data and how applications process data.

The client tier, or top tier, is the application’s user interface. Users interact directly
with the application through the user interface. The client interacts with the middle tier to
make requests and to retrieve data from the information tier. The client then displays to the
user the data retrieved from the middle tier.

16.4 Accessing Web Servers
To request documents from Web servers, users must know the URLs at which those docu-
ments reside. A URL contains a machine name (called a host name) on which the Web serv-

Fig. 16.1 Three-tier application model.

ApplicationMiddle tier

Information tier

Client tier

Database

884 Web Programming with CGI Chapter 16

er resides. Users can request documents from local Web servers (i.e., ones residing on
user’s machines) or remote Web servers (i.e., ones residing on machines across a network).

Local Web servers can be accessed in two ways: through the machine name, or through
localhost—a host name that references the local machine. We use localhost in this
chapter. To determine the machine name in Windows Me, right-click My Network
Places, and select Properties from the context menu to display the Network dialog. In
the Network dialog, click the Identification tab. The computer name displays in the
Computer name: field. Click Cancel to close the Network dialog. In Windows 2000,
right click My Computer and select Properties from the context menu to display the
System Properties dialog. In the dialog, click Network Identification. The Full
Computer Name: field in the System Properties window displays the computer
name. In Windows XP, select Start > Control Panel > Switch to Classic View >
System to view the System Properties dialog. In the dialog, select the Computer
Name tab.

A domain name represents a group of hosts on the Internet; it combines with a host
name (e.g., www—World Wide Web) and a top-level domain (TLD) to form a fully qualified
host name, which provides a user-friendly way to identify a site on the Internet. In a fully
qualified host name, the TLD often describes the type of organization that owns the domain
name. For example, the com TLD usually refers to a commercial business, whereas the
org TLD usually refers to a non-profit organization. In addition, each country has its own
TLD, such as cn for China, et for Ethiopia, om for Oman and us for the United States.

Each fully qualified host name is assigned a unique address called an IP address,
which is much like the street address of a house. Just as people use street addresses to locate
houses or businesses in a city, computers use IP addresses to locate other computers on the
Internet. A domain name system (DNS) server, a computer that maintains a database of host
names and their corresponding IP addresses, translates fully qualified host names to IP
addresses. This translation is referred to as a DNS lookup. For example, to access the Deitel
Web site, type the hostname (www.deitel.com) into a Web browser. The DNS server
translates www.deitel.com into the IP address of the Deitel Web server (i.e.,
63.110.43.82). The IP address of localhost is always 127.0.0.1.

16.5 Apache HTTP Server2

The Apache HTTP server, maintained by the Apache Software Foundation, is currently the
most popular Web server because of its stability, cost, efficiency and portability. It is an
open-source product that runs on Unix, Linux and Windows platforms.

To download the Apache HTTP server, visit www.apache.org.3 For instructions
on installing Apache, visit www.deitel.com. After installing the Apache HTTP server,
start the server by selecting the Start menu, then Programs > Apache HTTP Server
2.0.39 > Control Apache Server > Start. If the server starts successfully, a command-
prompt window opens, and states that the service is starting (Fig. 16.2). To stop the Apache
HTTP server, select Start > Programs > Apache HTTP Server 2.0.39 > Control
Apache Server > Stop.

2. This section applies to Windows 98/NT/2000/Me/XP, Unix and Linux users.
3. In this chapter, we use version 2.0.39.

Chapter 16 Web Programming with CGI 885

16.6 Requesting XHTML Documents
This section shows how to request an XHTML document from the Apache HTTP server.
In the Apache HTTP server directory structure, XHTML documents must be saved in the
htdocs directory. On Windows platforms, the htdocs directory resides in C:\Pro-
gram Files\Apache Group\Apache; on Linux platforms, the htdocs directory re-
sides in the /usr/local/httpd directory.4 Copy the test.html document from the
Chapter 16 examples directory on the book’s CD-ROM into the htdocs directory. To re-
quest the document, launch a Web browser, such as Internet Explorer, Netscape or equiv-
alent and enter the URL in the Address field (i.e., http://localhost/
test.html). Figure 16.3 shows the result of requesting test.html. [Note: In Apache,
the root of the URL refers to the default directory, htdocs, so we do not enter the directory
name in the Address field.]

16.7 Introduction to CGI
The Common Gateway Interface (CGI) is a standard for enabling applications (commonly
called CGI programs or CGI scripts) to interact with Web servers and (indirectly) with cli-
ents (e.g., Web browsers). CGI is often used to generate dynamic Web content using client
input, databases and other information services. A Web page is dynamic if its content is
generated programmatically when the page is requested, unlike static Web content, which
is not generated programmatically when the page is requested (i.e., the page already exists
before the request is made). For example, we can use CGI to have a Web page ask users for
their ZIP codes, then redirect users to another Web page that is specifically for people in

Fig. 16.2 Starting the Apache HTTP server.

4. Linux users may already have apache installed by default. The htdocs directory may be found
in a number of places depending on the Linux distribution.

Fig. 16.3 Requesting test.html from Apache.

886 Web Programming with CGI Chapter 16

that geographical area. In this chapter, we introduce the basics of CGI and use C++ to write
our first CGI scripts.

The Common Gateway Interface is “common” in the sense that it is not specific to any
particular operating system (such as Linux or Windows) or to any one programming lan-
guage. CGI was designed to be used with virtually any programming language. Thus, CGI
scripts can be written in C, C++, Perl, Python or Visual Basic without difficulty.

CGI was developed in 1993 by NCSA (National Center for Supercomputing Applica-
tions—www.ncsa.uiuc.edu) for use with its popular HTTPd Web server. Unlike Web
protocols and languages that have formal specifications, the initial concise description of CGI
written by NCSA proved simple enough that CGI was adopted as an unofficial standard
worldwide. CGI support was incorporated quickly into other Web servers, including Apache.

16.8 Simple HTTP Transaction
Before exploring how CGI operates, it is necessary to have a basic understanding of net-
working and how the World Wide Web works. In this section, we will examine the inner
workings of the Hypertext Transfer Protocol (HTTP) and discuss what goes on behind the
scenes when a browser requests and then displays a Web page. HTTP describes a set of
methods and headers that allows clients and servers to interact and exchange information
in a uniform and predictable way.

A Web page in its simplest form is an XHTML document, which is a plain text file that
contains markings (markup or elements) that describe the structure of the data the document
contains. For example, the XHTML

<title>My Web Page</title>

indicates to the browser that the text between the <title> start element and the </ti-
tle> end element is the title of the Web page. XHTML documents also can contain hyper-
text information (usually called hyperlinks), which create links to other Web pages or to
other locations on the same page. When a user activates a hyperlink (usually by clicking it
with the mouse), the Web browser “follows” the hyperlink by loading the new Web page
(or a different part of the same Web page).

Each XHTML file available for viewing over the Web has a URL (Universal Resource
Locator) associated with it—an address of sorts. The URL contains information that directs
a browser to the resource (most often a Web page) that the user wishes to access. For
example, consider the URL

http://www.deitel.com/books/downloads.html

The http:// indicates that the Web browser should request the resource using the
Hypertext Transfer Protocol. The middle portion, www.deitel.com, is the hostname of
the server. The hostname is the name of the computer where the resource resides; likewise,
this computer is usually referred to as the host, because it houses and maintains the resource.

The name of the resource being requested, /books/downloads.html (an
XHTML document), is the remainder of the URL. This portion of the URL specifies both
the name of the resource (downloads.html) and its path (/books). The path could
represent an actual directory in the Web server’s file system. However, for security reasons,
the path often is a virtual directory. In this case, the server translates the path into a real

Chapter 16 Web Programming with CGI 887

location on the server (or even on another computer), thus hiding the true location of the
resource. In fact, it is even possible that the resource is created dynamically and does not
reside anywhere on the server computer. As we will see, URLs also can be used to provide
input to a program on the server.

Now we consider how a browser, when given a URL, performs a simple HTTP trans-
action to retrieve and display a Web page. Figure 16.4 illustrates the transaction in detail.
The transaction is performed between a Web browser and a Web server.

In Step 1 of Fig. 16.4, the browser sends an HTTP request to the server. The request
(in its simplest form) looks like the following:

GET /books/downloads.html HTTP/1.1
Host: www.deitel.com

The word GET is an HTTP method, that indicates the client wishes to retrieve a resource.
The remainder of the request provides the name and path of the resource (an XHTML doc-
ument) and the protocol’s name and version number (HTTP/1.1).

Any server that understands HTTP (version 1.1) will be able to translate this request
and respond appropriately. Step 2 of Fig. 16.4 shows the results of a successful request. The

Fig. 16.4 Client interacting with server and Web server. Step 1: The get request,
GET /books/downloads.htm HTTP/1.1. (Part 1 of 2.)

Fig. 16.4 Client interacting with server and Web server. Step 2: The HTTP response,
HTTP/1.1 200 OK. (Part 2 of 2.)

888 Web Programming with CGI Chapter 16

server first responds with a line indicating the HTTP version, followed by a numeric code
and a phrase describing the status of the transaction. For example,

HTTP/1.1 200 OK

indicates success;

HTTP/1.1 404 Not found

informs the client that the requested resource was not found on the server in the specified
location.

The server then sends one or more HTTP headers, which provide information about
the data being sent to the client. In this case, the server is sending an XHTML document,
so the HTTP header reads

Content-Type: text/html

The information in the Content-Type header identifies the MIME (Multipurpose Inter-
net Mail Extensions) type of the content. Each type of data sent from the server has a MIME
type by which the browser determines how to process the data it receives. For example, the
MIME type text/plain indicates that the data contains text that should be displayed
without attempting to interpret any of the content as XHTML markup. Similarly, the MIME
type image/gif indicates that the content is a GIF image. When this MIME type is re-
ceived by the browser, it attempts to display the data as an image.

The headers are followed by a blank line, which indicates to the client that the server
is finished sending HTTP headers. The server then sends the contents of the requested
XHTML document (e.g., downloads.html). The connection is terminated when the
transfer of the resource is complete. The client-side browser interprets the XHTML it
receives and renders (or displays) the results.

16.9 Simple CGI Script
As long as an XHTML file on the server remains unchanged, its associated URL will dis-
play the same content in clients’ browsers each time the file is accessed. For that content to
change (e.g., to include new links or the latest company news), someone must alter the file
manually on the server, probably with a text editor or Web-page-design software.

This need for manual change is a problem for Web page authors who want to create
interesting and dynamic Web pages. To have a person continually alter a Web page is
tedious. For example, if you want your Web page always to display the current date or
weather conditions, the page would require continuous updating.

It is fairly straightforward to write a C++ program that outputs the current time and
date (to the monitor of the local computer). In fact, this requires only a few lines of code:

time_t currentTime; // time_t defined in <ctime>

time(¤tTime);

// asctime and localtime defined in <ctime>
cout << asctime(localtime(¤tTime));

C++ library function localtime, when passed a time_t variable (e.g., current-
Time) returns a pointer to a structure containing the “broken-down” local time (i.e., days,

Chapter 16 Web Programming with CGI 889

hours, etc. are placed in individual structure members). Function asctime, which takes a
pointer to a structure containing “broken-down” time, returns a string such as

Wed Jul 31 13:10:37 2002

What if we wish to send the current time to a client’s browser window for display
(rather than outputting it to the screen)? CGI makes this possible by allowing the server to
redirect the output of a program to the Web server itself, sending the output to a client’s
browser. Redirection of output allows output (e.g., from a cout statement) to be sent
somewhere other than the screen.

Figure 16.5 shows the full program listing for our first CGI script. Note that the pro-
gram consists mainly of cout statements (lines 15–29). Until now, the output of cout
always has been displayed on the screen. However, technically speaking, the default target
for cout is standard output. When a C++ program is executed as a CGI script, the standard
output is redirected by the Web server to the client Web browser. To execute the program,
we placed the compiled C++ executable file in the Web server’s cgi-bin directory. For
the purpose of this chapter, we have changed the executable file extension from .exe to
.cgi.5 Assuming that the Web server is on your local computer, you can execute the script
by typing

http://localhost/cgi-bin/localtime.cgi

in your browser’s Address or Location field. If you are requesting this script from a re-
mote Web server, you will need to replace localhost with the server’s hostname or IP
address.

5. On a server running Microsoft Windows, the executable may be run directly in .exe form.

1 // Fig. 16.5: localtime.cpp
2 // Displays the current date and time in a Web browser.
3
4 #include <iostream>
5
6 using std::cout;
7
8
9

10 int main()
11 {
12
13
14
15
16
17
18
19
20
21

Fig. 16.5 First CGI script. (Part 1 of 2.)

#include <ctime>

time_t currentTime; // variable for storing time

// output header
cout << "Content-Type: text/html\n\n";

// output XML declaration and DOCTYPE
cout << "<?xml version = \"1.0\"?>"

<< "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 "
 << "Transitional//EN\" \"http://www.w3.org/TR/xhtml1"
 << "/DTD/xhtml1-transitional.dtd\">";

890 Web Programming with CGI Chapter 16

The notion of standard output is similar to that of standard input, which we have seen
frequently referenced with the expression cin. Just as standard input refers to the standard
method of input into a program (normally, the keyboard), standard output refers to the stan-
dard method of output from a program (normally, the screen). It is possible to redirect (or
pipe) standard output to another destination. Thus, in our CGI script, when we output an
HTTP header (line 15) or XHTML elements (lines 18–21 and 26–29), the output is sent to
the Web server, as opposed to the screen. The server sends that output to the client over
HTTP, which interprets the headers and elements as if they were part of a normal server
response to an XHTML document request.

Figure 16.6 illustrates this process in more detail. In Step 1, the client requests the
resource named localtime.cgi from the server, just as it requested down-
loads.html in the previous example. If the server was not configured to handle CGI
scripts, it might just return the contents of the C++ executable file to the client, as if it were
any other document. However, based on the Web server configuration, the server executes
localtime.cgi and sends the CGI program’s output to the Web browser.

A properly configured Web server, however, will recognize that certain resources
should be handled differently. For example, when the resource is a CGI script, the script
must be executed by the server. A resource usually is designated as a CGI script in one of
two ways: either it has a special filename extension (such as .cgi or .exe) or it is located
in a specific directory (often cgi-bin). In addition, the server administrator must give
permission explicitly for remote clients to be able to access and execute CGI scripts.6

22
23
24
25
26
27
28
29
30
31 return 0;
32
33 } // end main

6. If you are using the Apache HTTP Server and would like more information on configuration, con-
sult the Apache home page at www.apache.org.

Fig. 16.5 First CGI script. (Part 2 of 2.)

time(¤tTime); // store time in currentTime

// output html element and some of its contents
cout << "<html xmlns = \"http://www.w3.org/1999/xhtml\">"
 << "<head><title>Current date and time</title></head>"
 << "<body><p>" << asctime(localtime(¤tTime))
 << "</p></body></html>";

Chapter 16 Web Programming with CGI 891

Fig. 16.6 Step 1: The get request, GET /cgi-bin/localtime.cgi HTTP/
1.1. (Part 1 of 4.)

Fig. 16.6 Step 2: The Web server starts the CGI script. (Part 2 of 4.)

Fig. 16.6 Step 3: The output of the script is sent to the Web server. (Part 3 of 4.)

892 Web Programming with CGI Chapter 16

In Step 2 of Fig. 16.6, the server recognizes that the resource is a CGI script and exe-
cutes the script. In Step 3, the three cout statements (lines 15, 18–21 and 26–29 of
Fig. 16.5) are executed, and the text is sent to the standard output and is returned to the Web
server. Finally, in Step 4, the Web server adds a message to the output that indicates the
status of the HTTP transaction (such as HTTP/1.1 200 OK, for success) and sends the
entire output from the CGI program to the client.

The client-side browser then processes the XHTML output and displays the results. It
is important to note that the browser is unaware of what has transpired on the server. In
other words, as far as the browser is concerned, it requests a resource like any other and
receives a response like any other. The client receives and interprets the script’s output, just
as if it were a simple, static XHTML document.

In fact, you can view the content that the browser receives by executing local-
time.cgi from the command line, as we normally would execute any of the programs
from the previous chapters. [Note: The file extension must be changed to .exe prior to
executing from the command line on a system running Windows]. Figure 16.7 shows the
output. For the purpose of this chapter, we formatted the output for readability.

Fig. 16.6 Step 4: The HTTP response, HTTP/1.1 200 OK. (Part 4 of 4.)

Content-Type: text/html

<?xml version = "1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns = "http://www.w3.org/1999/xhtml">
 <head>
 <title>Current date and time</title>
 </head>

 <body>
 <p>Mon Jul 15 13:52:45 2002</p>
 </body>
</html>

Fig. 16.7 Output of localtime.cgi when executed from the command line.

Chapter 16 Web Programming with CGI 893

Notice that, with the CGI script, we must output the Content-Type header, whereas, for
an XHTML document, the Web server would include the header.

To review, a CGI program prints the Content-Type header, a blank line and the
data (XHTML, plain text, etc.) to standard output. The Web server retrieves this output,
inserts the HTTP response to the beginning and delivers the content to the client. Later, we
will see other content types that may be used in this manner, as well as other headers that
may be used in addition to Content-Type.

The program of Figure 16.8 outputs the environment variables that the Web server
provides when executing the CGI script. These variables contain information about the
client and server environment, such as the type of Web browser being used and the location
of the document on the server. Lines 15–24 initialize an array of string objects with the
CGI environment variable names. Line 41 begins the XHTML table in which the data will
be displayed.

Lines 45–48 output each row of the table. Let us examine each of these lines closely.
Line 45 outputs an XHTML <tr> (table row) start tag, which indicates the beginning of a
new table row. Line 48 outputs its corresponding </tr> end tag, which indicates the end
of the row. Each row of the table contains two table cells. Each row contains the name of
an environment variable and the data associated with that variable. The <td> start tag (line
45) begins a new table cell. The for loop (line 44) iterates through each of the 24 string
objects. Each environment variable’s name is output in the left table cell. The value asso-
ciated with the environment variable is output by calling

1 // Fig. 16.8: environment.cpp
2 // Program to display CGI environment variables.
3 #include <iostream>
4
5 using std::cout;
6
7 #include <string>
8
9 using std::string;

10
11 #include <cstdlib>
12
13 int main()
14 {
15
16
17
18
19
20
21
22
23
24
25
26 // output header
27 cout << "Content-Type: text/html\n\n";

Fig. 16.8 Retrieving environment variables via function getenv. (Part 1 of 3.)

string environmentVariables[24] = {
"COMSPEC", "DOCUMENT_ROOT", "GATEWAY_INTERFACE",
"HTTP_ACCEPT", "HTTP_ACCEPT_ENCODING",
"HTTP_ACCEPT_LANGUAGE", "HTTP_CONNECTION",
"HTTP_HOST", "HTTP_USER_AGENT", "PATH",
"QUERY_STRING", "REMOTE_ADDR", "REMOTE_PORT",
"REQUEST_METHOD", "REQUEST_URI", "SCRIPT_FILENAME",
"SCRIPT_NAME", "SERVER_ADDR", "SERVER_ADMIN",
"SERVER_NAME","SERVER_PORT","SERVER_PROTOCOL",
"SERVER_SIGNATURE","SERVER_SOFTWARE" };

894 Web Programming with CGI Chapter 16

28
29 // output XML declaration and DOCTYPE
30 cout << "<?xml version = \"1.0\"?>"
31 << "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 "
32 << "Transitional//EN\" \"http://www.w3.org/TR/xhtml1"
33 << "/DTD/xhtml1-transitional.dtd\">";
34
35 // output html element and some of its contents
36 cout << "<html xmlns = \"http://www.w3.org/1999/xhtml\">"
37 << "<head><title>Environment Variables</title></head>"
38 << "<body>";
39
40 // begin outputting table
41 cout << "<table border = \"0\" cellspacing = \"2\">";
42
43 // iterate through environment variables
44 for (int i = 0; i < 24; i++)
45 cout << "<tr><td>" <<
46 << "</td><td>"
47 <<
48 << "</td></tr>";
49
50 cout << "</table></body></html>";
51
52 return 0;
53
54 } // end main

Fig. 16.8 Retrieving environment variables via function getenv. (Part 2 of 3.)

environmentVariables[i]

getenv(environmentVariables[i].data())

Chapter 16 Web Programming with CGI 895

function getenv of <cstdlib> and passing it the string value returned from the func-
tion call environmentVariables[i].data(). Function data returns a C-style
char * string containing the contents of the environmentVariables[i] string.

Common Programming Error 16.1
Forgetting to place a blank line after a header is a logic error. 16.1

16.10 Sending Input to a CGI Script
Though preset environment variables provide much information, we would like to be able
to supply any type of data to our CGI scripts, such as a user’s name or a search-engine que-
ry. The environment variable QUERY_STRING provides a mechanism to do just that. The
QUERY_STRING variable contains information that is appended to a URL in a get request.
For example, the URL

www.somesite.com/cgi-bin/script.cgi?state=California

causes the Web browser to request a resource from www.somesite.com. The resource is a
CGI script (cgi-bin/script.cgi). The Web server stores the data following the ?
(state=California) in the QUERY_STRING environment variable. The query string
provides parameters that customize the request for a particular client. Note that the question
mark is not part of the resource requested, nor is it part of the query string. It serves as a
delimiter (or separator) between the two.

Figure 16.9 shows a simple example of a CGI script that reads data passed through the
QUERY_STRING. Note that data in a query string can be formatted in a variety of ways.
The CGI script reading the string must know how to interpret the formatted data. In the
example in Fig. 16.9, the query string contains a series of name-value pairs delimited by
ampersands (&), as in

name=Jill&age=22

Fig. 16.8 Retrieving environment variables via function getenv. (Part 3 of 3.)

896 Web Programming with CGI Chapter 16

In line 15 of Figure 16.9, we pass "QUERY_STRING" to function getenv, which
returns the query string and assigns it to string variable query. After outputting a
header, some XHTML start tags and the title (lines 21–29), we test if query contains data
(line 34). If not, we output a message instructing the user to add a query string to the URL.
We also provide a link to a URL that includes a sample query string. Query-string data may
be specified as part of a hyperlink in a Web page when encoded in this manner. The con-
tents of the query string are output on line 42.

1 // Fig. 16.9: querystring.cpp
2 // Demonstrating QUERY_STRING.
3 #include <iostream>
4
5 using std::cout;
6
7 #include <string>
8
9 using std::string;

10
11 #include <cstdlib>
12
13 int main()
14 {
15 string query = ;
16
17 // output header
18 cout << "Content-Type: text/html\n\n";
19
20 // output XML declaration and DOCTYPE
21 cout << "<?xml version = \"1.0\"?>"
22 << "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 "
23 << "Transitional//EN\" \"http://www.w3.org/TR/xhtml1"
24 << "/DTD/xhtml1-transitional.dtd\">";
25
26 // output html element and some of its contents
27 cout << "<html xmlns = \"http://www.w3.org/1999/xhtml\">"
28 << "<head><title>Name/Value Pairs</title></head>"
29 << "<body>";
30
31 cout << "<h2>Name/Value Pairs</h2>";
32
33 // if query contained no data
34 if ()
35 cout << "Please add some name-value pairs to the URL "
36 << "above.
Or try "
37 << ""
38 << "this.";
39
40 // user entered query string
41 else
42 cout << "<p>The query string is: " << << "</p>";
43

Fig. 16.9 Reading input from QUERY_STRING. (Part 1 of 2.)

getenv("QUERY_STRING")

query == ""

query

Chapter 16 Web Programming with CGI 897

16.11 Using XHTML Forms to Send Input
Having a client enter input directly into a URL is not a user-friendly approach. Fortunately,
XHTML provides the ability to include forms on Web pages that provide a more intuitive
way for users to input information to be sent to a CGI script.

The form element encloses an XHTML form. The form element generally takes two
attributes. The first attribute is action, which specifies the action to take when the user
submits the form. For our purposes, the action usually will be to call a CGI script to pro-
cess the form’s data. The second attribute used in the form element is method. The
method attribute identifies the type of HTTP request to use when the browser submits the

44 cout << "</body></html>";
45
46 return 0;
47
48 } // end main

Fig. 16.9 Reading input from QUERY_STRING. (Part 2 of 2.)

898 Web Programming with CGI Chapter 16

form to the Web server. In this section, we will show examples using both methods to illus-
trate them in detail.

An XHTML form may contain any number of form elements. Figure 16.10 gives a
brief description of several form elements.

Figure 16.11 demonstrates a basic XHTML form using the HTTP get method. The
form is output in lines 35–38 with the form element. Notice that attribute method has the
value "get" and attribute action has the value "getquery.cgi" (i.e., the script
actually calls itself to handle the form data once they are submitted).

The form contains two input fields. The first (line 36) is a single-line text field
(type = "text") named word. The second (line 37) displays a button, labeled Submit
Word, to submit the form data.

Element name

type attribute
value (for
input
elements) Description

input text Provides a single-line text field for text input.

password Like text, but each character typed by the user appears
as an asterisk (*).

checkbox Displays a checkbox that can be checked (true) or
unchecked (false).

radio Radio buttons are like checkboxes, except that only one
radio button in a group of radio buttons can be selected
at a time.

button A push button.

submit A push button that submits form data according to the
form’s action.

image The same as submit, but displays an image rather than
a push button.

reset A push button that resets form fields to their default
values.

file Displays a text field and button that allow the user to
specify a file to upload to a Web server. When clicked,
the button opens a file dialog that allows the user to
select a file.

hidden Hidden form data that can be used by the form handler
on the server. These inputs are not visible to the user.

select Drop-down menu or selection box. This element is used
with the option element to specify a series of select-
able items.

textarea This is a multiline text field in which text can be input or
displayed.

Fig. 16.10 XHTML form elements.

Chapter 16 Web Programming with CGI 899

1 // Fig. 16.11: getquery.cpp
2 // Demonstrates GET method with XHTML form.
3 #include <iostream>
4
5 using std::cout;
6
7 #include <string>
8
9 using std::string;

10
11 #include <cstdlib>
12
13 int main()
14 {
15 string nameString = "";
16 string wordString = "";
17 string query = ;
18
19 // output header
20 cout << "Content-Type: text/html\n\n";
21
22 // output XML declaration and DOCTYPE
23 cout << "<?xml version = \"1.0\"?>"
24 << "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 "
25 << "Transitional//EN\" \"http://www.w3.org/TR/xhtml1"
26 << "/DTD/xhtml1-transitional.dtd\">";
27
28 // output html element and some of its contents
29 cout << "<html xmlns = \"http://www.w3.org/1999/xhtml\">"
30 << "<head><title>Using GET with Forms</title></head>"
31 << "<body>";
32
33 // output xhtml form
34 cout << "<p>Enter one of your favorite words here:</p>"
35 << "<form method = \"get\" action = \"getquery.cgi\">"
36 << "<input type = \"text\" name = \"word\"/>"
37 << "<input type = \"submit\" value = \"Submit Word\"/>"
38 << "</form>";
39
40 // query is empty
41 if ()
42 cout << "<p>Please enter a word.</p>";
43
44 // user entered query string
45 else {
46
47
48
49
50 // no word was entered
51 if ()
52 cout << "<p>Please enter a word.</p>";
53

Fig. 16.11 Using GET with an XHTML form. (Part 1 of 3.)

getenv("QUERY_STRING")

query == ""

int wordLocation = query.find_first_of("word=") + 5;

wordString = query.substr(wordLocation);

wordString == ""

900 Web Programming with CGI Chapter 16

54 // word was entered
55 else
56 cout << "<p>Your word is: " << wordString << "</p>";
57 }
58
59 cout << "</body></html>";
60
61 return 0;
62
63 } // end main

Fig. 16.11 Using GET with an XHTML form. (Part 2 of 3.)

Chapter 16 Web Programming with CGI 901

The first time the script is executed, there should be no value in QUERY_STRING
(unless the user has appended the query string to the URL). Once the user enters a word
into the word field and presses Submit Word, the script is requested again. This time, the
name of the input field (word) and the value entered by the user are placed in the
QUERY_STRING variable by the browser. That is, if the user enters the word “tech-
nology” and presses the Submit Word, QUERY_STRING is assigned the value
word=technology and the query string is appended to the URL in the browser window.

During the second execution of the script, the query string is decoded. Lines 46–48 in
Fig. 16.11 search query for the first occurrence of word=, using string method
find_first_of, which returns an integer value corresponding to the location in the
string where the first match was found. A value of 5 is added to the location to move
the position in the string to the first character of the user’s favorite word. Method
substr (line 48) returns the remainder of the string starting at the location specified
by wordLocation, which is then assigned to wordString. Line 51 determines
whether the user entered a word. If so, line 56 outputs the word entered by the user.

The two previous examples used get to pass data to the CGI scripts through an envi-
ronment variable. Web browsers typically interact with Web servers by submitting forms
using HTTP post. CGI programs read the contents of post requests using standard input.
For comparison purposes, let us now reimplement the application of Fig. 16.11, using
POST (as in Fig. 16.12). Notice that the code in the two figures is virtually identical. The
XHTML form indicates that we are now using the POST method to submit the form data.

1 // Fig. 16.12: post.cpp
2 // Demonstrates POST method with XHTML form.
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7
8 #include <string>
9

10 using std::string;
11

Fig. 16.12 Using POST with an XHTML form. (Part 1 of 4.)

Fig. 16.11 Using GET with an XHTML form. (Part 3 of 3.)

902 Web Programming with CGI Chapter 16

12 #include <cstdlib>
13
14 int main()
15 {
16
17 string dataString = "";
18 string nameString = "";
19 string wordString = "";
20 int contentLength = 0;
21
22 // content was submitted
23 if () {
24
25
26
27 dataString = postString;
28 } // end if
29
30 // output header
31 cout << "Content-Type: text/html\n\n";
32
33 // output XML declaration and DOCTYPE
34 cout << "<?xml version = \"1.0\"?>"
35 << "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 "
36 << "Transitional//EN\" \"http://www.w3.org/TR/xhtml1"
37 << "/DTD/xhtml1-transitional.dtd\">";
38
39 // output XHTML element and some of its contents
40 cout << "<html xmlns = \"http://www.w3.org/1999/xhtml\">"
41 << "<head><title>Using POST with Forms</title></head>"
42 << "<body>";
43
44 // output XHTML form
45 cout << "<p>Enter one of your favorite words here:</p>"
46 << "<form method = \"post\" action = \"post.cgi\">"
47 << "<input type = \"text\" name = \"word\" />"
48 << "<input type = \"submit\" value = \"Submit Word\" />"
49 << "</form>";
50
51 // data was sent using POST
52 if () {
53 int nameLocation =
54 ;
55
56 int endLocation = ;
57
58 // retrieve entered word
59 wordString =
60);
61
62 // no data was entered in text field
63 if (wordString == "")
64 cout << "<p>Please enter a word.</p>";

Fig. 16.12 Using POST with an XHTML form. (Part 2 of 4.)

char postString[1024] = ""; // variable to hold POST data

getenv("CONTENT_LENGTH")
contentLength = atoi(getenv("CONTENT_LENGTH"));

cin.read(postString, contentLength);

contentLength > 0

dataString.find_first_of("word=") + 5

dataString.find_first_of("&") - 1

dataString.substr(nameLocation,
endLocation - nameLocation

Chapter 16 Web Programming with CGI 903

65
66 // output word
67 else
68 cout << "<p>Your word is: " << << "</p>";
69
70 } // end if
71
72 // no data was sent
73 else
74 cout << "<p>Please enter a word.</p>";
75
76 cout << "</body></html>";
77
78 return 0;
79
80 } // end main

Fig. 16.12 Using POST with an XHTML form. (Part 3 of 4.)

wordString

904 Web Programming with CGI Chapter 16

The Web server sends post data to a CGI script via standard input. The data is encoded
(i.e., formatted) just as in QUERY_STRING (that is, with name-value pairs connected by
equals signs and ampersands), but the QUERY_STRING environment variable is not set.
Instead, the POST method sets the environment variable CONTENT_LENGTH, to indicate
the number of characters of data that were sent in the post requests.

The value of the CONTENT_LENGTH environment variable is used by the CGI script
to process the correct amount of data. Line 23 determines whether CONTENT_LENGTH
contains a value. Line 24 reads in the value and converts it to an integer by calling
<cstdlib> function atoi. Line 26 calls function cin.read to read characters from
standard input and stores the characters in array postString. Line 27 converts post-
String’s data to a string by assigning it to dataString.

In earlier chapters, we read data from standard input using an expression such as

cin >> data;

The same approach might work in our CGI script as a replacement for the cin.read
statement. Recall that cin reads data from standard input up to and including the first new-
line character, space or tab, whichever comes first. The CGI specification does not require
a newline to be appended after the last name-value pair. Although some browsers append
a newline or EOF, they are not required to do so. If cin is used with a browser that sends
only the name-value pairs (as per the CGI specification), cin must wait for a newline that
will never arrive. In this case, the server eventually “times out” and the CGI script termi-
nates. Therefore, cin.read is preferred over cin, because the programmer can specify
exactly how much data to read.

The CGI scripts from this section, while useful for explaining how get and post
operate, do not include many of the features described in the CGI specification. For
example, if we enter the words didn't translate into the text field and click the
submit button, the script informs us that our word is didn%27t+translate.

What has happened here? Web browsers URL encode the XHTML form data they
send. This means that spaces are replaced with plus signs, and other symbols (e.g., apostro-
phes) are translated into their ASCII value in hexadecimal format and preceded with a per-
cent sign. URL encoding is necessary because URLs do not allow certain characters, such
as spaces and apostrophes.

Fig. 16.12 Using POST with an XHTML form. (Part 4 of 4.)

Chapter 16 Web Programming with CGI 905

16.12 Other Headers
We mentioned in Section 16.9 that there are several HTTP headers in addition to the
Content-Type header. A CGI script can supply other HTTP headers in addition to
Content-Type. In most cases, the server passes these extra headers to the client
without executing them. For example, the following Refresh header redirects the cli-
ent to a new location after a specified amount of time:

Refresh: "5; URL = http://www.deitel.com/newpage.html"

Five seconds after the Web browser receives this header, the browser requests the resource
at the specified URL. Alternatively, the Refresh header can omit the URL, in which case
it will refresh the current page after the given time has expired.

The CGI specification indicates that certain types of headers output by a CGI script are
to be handled by the server, rather than be passed directly to the client. The first of these is
the Location header. Like Refresh, Location redirects the client to a new location:

Location: http://www.deitel.com/newpage.html

If used with a relative (or virtual) URL (i.e., Location: /newpage.html), the Lo-
cation header indicates to the server that the redirection is to be performed on the server
side without sending the Location header back to the client. In this case, it appears to the
user as if the document rendered in their Web browser was the resource they requested.

The CGI specification also includes a Status header, which instructs the server to
output a corresponding status header line (such as HTTP/1.1 200 OK). Normally, the
server will send the appropriate status line to the client (adding, for example, the 200 OK
status line in most cases). However, CGI allows programmers to change the response
status. For example, sending a

Status: 204 No Response

header indicates that, although the request was successful, the client should not display a
new page in the browser window. This header might be useful if you want to allow users
to submit forms without relocating to a new page.

We have now covered the fundamentals of the CGI specification. To review, CGI
allows scripts to interact with servers in three basic ways:

1. through the output of headers and content to the server via standard output;

2. by the server’s setting of environment variables (including the URL-encoded
QUERY_STRING) whose values are available within the script (via getenv); and

3. through POSTed, URL-encoded data that the server sends to the script’s standard
input.

16.13 Case Study: An Interactive Web Page
Figure 16.13 and Fig. 16.14 show the implementation of a simple interactive portal for the
fictional Bug2Bug Travel Web site. The example queries the client for a name and pass-
word, then displays information about weekly travel specials based on the data entered. For
simplicity, the example does not encrypt the data sent to the server.

906 Web Programming with CGI Chapter 16

Figure 16.13 displays the opening page. It is a static XHTML document containing a
form that POSTs data to the portal.cgi CGI script (line 16). The form contains one
field each to collect the user’s name (line 18) and the user’s password (line 19). [Note: This
XHTML document was placed in the document directory of the Web server.]

Figure 16.14 contains the CGI script. First, let us examine how the data is retrieved
from standard input and stored in strings. The string library find function searches
dataString (line 30) for an occurrence of namebox=. Function find returns a loca-
tion in the string where namebox= was found. To retrieve the value associated with

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 16.13: travel.html -->
6 <!-- Bug2Bug Travel Homepage -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Bug2Bug Travel</title>
11 </head>
12
13 <body>
14 <h1>Welcome to Bug2Bug Travel</h1>
15
16 <form >
17 <p>Please enter your name:</p>
18 <input type = "text" name = "namebox" />
19 <input type = "password" name = "passwordbox" />
20 <p>password is not encrypted</p>
21 <input type = "submit" name = "button" />
22 </form>
23
24 </body>
25 </html>

Fig. 16.13 Interactive portal to create a password-protected Web page.

method = "post" action = "/cgi-bin/portal.cgi"

Chapter 16 Web Programming with CGI 907

namebox=—the value entered by the user—the position in the string moves forward 8
characters. Recall that a query string contains name-value pairs separated by equals signs
and ampersands. To find the ending location for the data we wish to retrieve, we search for
the & character on line 31. The program now contains an integer “pointing” to the starting
location. The length of the entered word is determined by the calculation endNameloc-
ation – namelocation. On lines 37–41, we assign the form-field values to variables
nameString and passwordString. We use nameString in line 58 to output a per-
sonalized greeting to the user. The current weekly specials are displayed in lines 58–62. (In
this example, we include this information as part of the script.)

If the member password is correct, additional specials are output (lines 66–67). If the
password is incorrect, the client is informed that the password was invalid.

Note that we use a combination of a static Web page and a CGI script here. We could
have incorporated the opening XHTML form and the processing of the data into a single
CGI script, as we did in previous examples in this chapter. We ask the reader to do this in
Exercise 16.8.

Performance Tip 16.1
It is always much more efficient for the server to provide static content rather than execute
a CGI script, because it takes time for the server to load the script from hard disk into mem-
ory and execute the script (whereas an XHTML file needs to be sent only to the client). It is
a good practice to use a mix of static XHTML (for content that generally remains unchanged)
and CGI scripting (for dynamic content). This practice allows the Web server to respond to
clients more efficiently than if only CGI scripting were used. 16.1

1 // Fig. 16.14: portal.cpp
2 // Handles entry to Bug2Bug Travel.
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7
8 #include <string>
9

10 using std::string;
11
12 #include <cstdlib>
13
14 int main()
15 {
16 char postString[1024] = "";
17 string dataString = "";
18 string nameString = "";
19 string passwordString = "";
20 int contentLength = 0;
21
22 // data was posted
23 if ()
24
25

Fig. 16.14 Interactive portal handler. (Part 1 of 3.)

getenv("CONTENT_LENGTH")
contentLength = atoi(getenv("CONTENT_LENGTH"));

908 Web Programming with CGI Chapter 16

26
27 dataString = postString;
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 // output header
44 cout << "Content-Type: text/html\n\n";
45
46 // output XML declaration and DOCTYPE
47 cout << "<?xml version = \"1.0\"?>"
48 << "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 "
49 << "Transitional//EN\" \"http://www.w3.org/TR/xhtml1"
50 << "/DTD/xhtml1-transitional.dtd\">";
51
52 // output html element and some of its contents
53 cout << "<html xmlns = \"http://www.w3.org/1999/xhtml\">"
54 << "<head><title>Bug2Bug Travel</title></head>"
55 << "<body>";
56
57 // output specials
58 cout << "<h1>Welcome " << << "!</h1>"
59 << "<p>Here are our weekly specials:</p>"
60 << "Boston to Taiwan ($875)"
61 << "San Diego to Hong Kong ($750)"
62 << "Chicago to Mexico City ($568)";
63
64 // password is correct
65 if ()
66 cout << "<hr /><p>Current member special: "
67 << "Seattle to Tokyo ($400)</p>";
68
69 // password was incorrect
70 else
71 cout << "<p>Sorry. You have entered an incorrect "
72 << "password</p>";
73
74 cout << "</body></html>";
75 return 0;
76
77 } // end main

Fig. 16.14 Interactive portal handler. (Part 2 of 3.)

cin.read(postString, contentLength);

// search string for input data
int namelocation = dataString.find("namebox=") + 8;
int endNamelocation = dataString.find("&");

int password = dataString.find("passwordbox=") + 12;
int endPassword = dataString.find("&button");

// get values for name and password
nameString = dataString.substr(namelocation,
 endNamelocation - namelocation);

passwordString = dataString.substr(password, endPassword -
 password);

nameString

passwordString == "coast2coast"

Chapter 16 Web Programming with CGI 909

16.14 Cookies
In the last two sections, we discussed two ways in which information may be passed between
programs (or executions of the same program) through a browser. This section concentrates
on storing state information on the client computer with cookies. Cookies are essentially small
text files that a Web server sends to your browser, which then writes the cookies onto your
computer. Many Web sites use cookies to track a user’s progress through their site (as in a
shopping-cart application) or to help customize the site for an individual user.

Cookies do not break into your computer, nor do they erase your hard drive. However,
they can be used to identify users and keep track of how often users visit a site or what users
buy at a site. For this reason, cookies are considered to be a security and privacy concern.
Popular Web browsers provide support for cookies. These browsers also allow users who
are concerned about their privacy and security to disable this support. Most major Web sites
use cookies. As a programmer, you should be aware of the possibility that cookies might

Fig. 16.14 Interactive portal handler. (Part 3 of 3.)

910 Web Programming with CGI Chapter 16

be disabled by your clients. Figure 16.15, Fig. 16.16 and Fig. 16.17 use cookies to store and
manipulate information about a user.

Figure 16.15 is an XHTML page that contains a form in which values are to be input.
The form posts its information to writecookie.cgi (Fig. 16.16). This program
retrieves the data contained in the CONTENT_LENGTH environment variable. Line 24 of
Fig. 16.16 declares and initializes string expires to store the expiration date of the
cookie (i.e., how long the cookie resides on the client’s machine). This value can be a
string, like the one in this example, or it can be a relative value. For instance, +30d sets the
cookie to exist for 30 days. For the purposes of this chapter the expiration date is deliber-
ately set to expire in 2010 to ensure that the program will run properly well into the future.
You may set the expiration date of this example to any future date as needed. The browser
deletes cookies when they expire.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 16.15: cookieform.html -->
6 <!-- Cookie Demonstration -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Writing a cookie to the client computer</title>
11 </head>
12
13 <body>
14 <h1>Click Write Cookie to save your cookie data.</h1>
15
16 <form
17 >
18
19 <p>Name:

20 <input type = "text" name = "name" />
21 </p>
22
23 <p>Age:

24 <input type = "text" name = "age" />
25 </p>
26
27 <p>Favorite Color:

28 <input type = "text" name = "color" />
29 </p>
30
31 <p>
32 <input type = "submit" name = "button" />
33 </p>
34 </form>
35
36 </body>
37 </html>

Fig. 16.15 XHTML document containing a form to post data to the server (Part 1 of 2.)

method = "post"
action = "/cgi-bin/writecookie.cgi"

Chapter 16 Web Programming with CGI 911

1 // Fig. 16.16: writecookie.cpp
2 // Program to write a cookie to a client's machine.
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7
8 #include <cstdlib>
9 #include <string>

10
11 using std::string;
12
13 int main()
14 {
15 char query[1024] = "";
16 string dataString = "";
17 string nameString = "";
18 string ageString = "";
19 string colorString = "";
20
21 int contentLength = 0;
22
23
24
25

Fig. 16.16 Writing a cookie. (Part 1 of 3.)

Fig. 16.15 XHTML document containing a form to post data to the server (Part 2 of 2.)

// expiration date of cookie
string expires = "Friday, 14-MAY-10 16:00:00 GMT";

912 Web Programming with CGI Chapter 16

26 // data was entered
27 if (getenv("CONTENT_LENGTH")) {
28 contentLength = atoi(getenv("CONTENT_LENGTH"));
29
30 // read data from standard input
31 cin.read(query, contentLength);
32 dataString = query;
33
34 // search string for data and store locations
35 int nameLocation = dataString.find("name=") + 5;
36 int endName = dataString.find("&");
37
38 int ageLocation = dataString.find("age=") + 4;
39 int endAge = dataString.find("&color");
40
41 int colorLocation = dataString.find("color=") + 6;
42 int endColor = dataString.find("&button");
43
44 // get value for user's name
45 nameString = dataString.substr(nameLocation, endName -
46 nameLocation);
47
48 // get value for user's age
49 if (ageLocation > 0)
50 ageString = dataString.substr(ageLocation, endAge -
51 ageLocation);
52
53 // get value for user's favorite color
54 if (colorLocation > 0)
55 colorString = dataString.substr(colorLocation,
56 endColor - colorLocation);
57
58
59
60
61
62
63 } // end if
64
65
66
67
68 // output XML declaration and DOCTYPE
69 cout << "<?xml version = \"1.0\"?>"
70 << "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 "
71 << "Transitional//EN\" \"http://www.w3.org/TR/xhtml1"
72 << "/DTD/xhtml1-transitional.dtd\">";
73
74 // output html element and some of its contents
75 cout << "<html xmlns = \"http://www.w3.org/1999/xhtml\">"
76 << "<head><title>Cookie Saved</title></head>"
77 << "<body>";
78

Fig. 16.16 Writing a cookie. (Part 2 of 3.)

// set cookie
cout << "Set-Cookie: Name=" << nameString << "age:"
 << ageString << "color:" << colorString
 << "; expires=" << expires << "; path=\n";

// output header
cout << "Content-Type: text/html\n\n";

Chapter 16 Web Programming with CGI 913

After obtaining the data from the form, the program creates a cookie (lines 59–61). In
this example, we create a cookie by adding a line of text containing the name-value pairs
of the posted data, delimited by a colon character (:). The line must be output before the
header is written to the client. The line of text begins with the Set-Cookie: header, indi-
cating that the browser should store the incoming data in a cookie. We set three attributes
for the cookie: a name-value pair containing the data to be stored, a name-value pair con-
taining the expiration date and a name-value pair containing the URL of the server domain
(e.g., www.deitel.com) for which the cookie is valid. For this example, path is not set
to any value, making the cookie readable from any server in the domain of the server that
originally wrote the cookie. Lines 66–87 send a Web page indicating that the cookie has
been written to the client.

Portability Tip 16.1
Web browsers store the cookie information in a vendor-specific manner. For example, Inter-
net Explorer stores cookies as text files in the Temporary Internet Files directory on the
client’s machine. Netscape stores its cookies in a single file named cookies.txt. 16.1

Figure 16.17 reads the cookie written in Fig. 16.16 and displays the information. When
a request is made from the client Web browser, the Web browser locates any cookies pre-
viously written by the server to which the request is being made. These cookies are sent by

79 // output user's information
80 cout << "<p>The cookies have been set with the following"
81 << " data:</p>"
82 << "<p>Name: " << nameString << "
</p>"
83 << "<p>Age:" << ageString << "
</p>"
84 << "<p>Color:" << colorString << "
</p>"
85 << "<p>Click "
86 << "here to read saved cookie data:</p>"
87 << "</body></html>";
88
89 return 0;
90
91 } // end main

Fig. 16.16 Writing a cookie. (Part 3 of 3.)

914 Web Programming with CGI Chapter 16

the browser as part of the request. On the server, the environment variable HTTP_COOKIE
stores the client’s cookies sent as part of the request. Line 20 calls function getenv with
the HTTP_COOKIE environment variable as the first parameter. The value returned is
stored in dataString. The name-value pairs are decoded and stored in strings on lines
23–36 according to the name:value encoding scheme used in Fig. 16.16. The contents
of the cookie are output as a Web page on lines 39–58.

Software Engineering Observation 16.2
Cookies present a security risk. If unauthorized users gain access to a computer, they can
examine the local disk and view files, which include cookies. For this reason, sensitive data,
such as passwords, should never be stored in cookies. 16.2

1 // Fig. 16.17: readcookie.cpp
2 // Program to read cookie data.
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7
8 #include <cstdlib>
9 #include <string>

10
11 using std::string;
12
13 int main()
14 {
15 string dataString = "";
16 string nameString = "";
17 string ageString = "";
18 string colorString = "";
19
20
21
22
23
24
25
26
27
28
29
30
31 // store cookie data in strings
32 nameString = dataString.substr(nameLocation, endName -
33 nameLocation);
34 ageString = dataString.substr(ageLocation, endAge -
35 ageLocation);
36 colorString = dataString.substr(colorLocation);
37
38 // output header
39 cout << "Content-Type: text/html\n\n";
40

Fig. 16.17 Program to read cookies from the client’s computer. (Part 1 of 2.)

dataString = getenv("HTTP_COOKIE");

// search through cookie data string
int nameLocation = dataString.find("Name=") + 5;
int endName = dataString.find("age:");

int ageLocation = dataString.find("age:") + 4;
int endAge = dataString.find("color:");

int colorLocation = dataString.find("color:") + 6;

Chapter 16 Web Programming with CGI 915

16.15 Server-Side Files
The other mechanism by which to maintain state information is to create server-side files
(i.e., files that are located on the server or on the server’s network). This mechanism is a
slightly more secure method by which to maintain vital information. In this mechanism,
only someone with access and permission to change files on the server can alter files.
Figure 16.18 and Fig. 16.19 ask users for contact information then store it on the server.
The file that is created by the script is shown in Fig. 16.20.

41 // output XML declaration and DOCTYPE
42 cout << "<?xml version = \"1.0\"?>"
43 << "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 "
44 << "Transitional//EN\" \"http://www.w3.org/TR/xhtml1"
45 << "/DTD/xhtml1-transitional.dtd\">";
46
47 // output html element and some of its contents
48 cout << "<html xmlns = \"http://www.w3.org/1999/xhtml\">"
49 << "<head><title>Read Cookies</title></head>"
50 << "<body>";
51
52 // data was found
53 if (dataString != "")
54 cout << "<h3>The following data is saved in a cookie on"
55 << " your computer</h3>"
56 << "<p>Name: " << nameString << "
</p>"
57 << "<p>Age: " << ageString << "
</p>"
58 << "<p>Color: " << colorString << "
</p>";
59
60 // no data was found
61 else
62 cout << "<p>No cookie data.</p>";
63
64 cout << "</body></html>";
65
66 return 0;
67

} // end main

Fig. 16.17 Program to read cookies from the client’s computer. (Part 2 of 2.)

916 Web Programming with CGI Chapter 16

The XHTML document in Fig. 16.18 posts the form data to the CGI script in
Fig. 16.19. In the CGI script, lines 46–106 decode the parameters that were sent by the
client. Line 123 creates an instance of the output file stream (outFile) that opens a file
for appending. If the file clients.txt does not exist, it is created. Lines 132–136
output the personal information to the file. (See Fig. 16.20 for the contents of the file.)
The remainder of the program outputs an XHTML document that summarizes the user’s
information.

There are a few important points to make about this program. First, we do not perform
any validation on the data before writing the data to disk. Normally, the script would check
for bad data, incomplete data, etc. Second, our file is located in the cgi-bin directory,
which is publicly accessible. If someone knew the filename, it would be relatively easy to
access someone else’s contact information.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. 16.18: savefile.html -->
6 <!-- Form to input client information -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>Please enter your contact information</title>
11 </head>
12
13 <body>
14 <p>Please enter your information in the form below.</p>
15 <p>Note: You must fill in all fields.</p>
16 <form
17 >
18 <p>
19 First Name:
20 <input type = "text" name = "firstname" size = "10" />
21 Last Name:
22 <input type = "text" name = "lastname" size = "15" />
23 </p>
24
25 <p>
26 Address:
27 <input type = "text" name = "address" size = "25" />
28

29 Town:
30 <input type = "text" name = "town" size = "10" />
31 State:
32 <input type = "text" name = "state" size = "2" />
33

34 Zip Code:
35 <input type = "text" name = "zipcode" size = "5" />
36 Country:
37 <input type = "text" name = "country" size = "10" />
38 </p>

Fig. 16.18 XHTML document to read user’s contact information. (Part 1 of 2.)

method = "post"
action = "/cgi-bin/savefile.cgi"

Chapter 16 Web Programming with CGI 917

This script is not robust enough for deployment on the Internet, but it does provide
an example of the use of server-side files to store information. Once the files are stored
on the server, users cannot change the files unless they are allowed to do so by the server
administrator. Thus, storing these files on the server is safer than storing user data in
cookies. [Note: Many systems store user information in password-protected databases for
higher levels of security.]

39 <p>
40 E-mail Address:
41 <input type = "text" name = "email" />
42 </p>
43 <input type = "submit" value = "Enter" />
44 <input type = "reset" value = "Clear" />
45 </form>
46 </body>
47 </html>

1 // Fig. 16.19: savefile.cpp
2 // Program to enter user's contact information into a
3 // server-side file.
4
5 #include <iostream>
6
7 using std::cerr;

Fig. 16.19 Creating a server-side file to store user data. (Part 1 of 5.)

Fig. 16.18 XHTML document to read user’s contact information. (Part 2 of 2.)

918 Web Programming with CGI Chapter 16

8 using std::cout;
9 using std::cin;

10 using std::ios;
11
12 #include <fstream>
13
14 using std::ofstream;
15
16 #include <string>
17
18 using std::string;
19
20 #include <cstdlib>
21
22 int main()
23 {
24 char postString[1024] = "";
25 int contentLength = 0;
26
27 // variables to store user data
28 string dataString = "";
29 string firstname = "";
30 string lastname = "";
31 string address = "";
32 string town = "";
33 string state = "";
34 string zipcode = "";
35 string country = "";
36 string email = "";
37
38 // data was posted
39 if (getenv("CONTENT_LENGTH"))
40 contentLength = atoi(getenv("CONTENT_LENGTH"));
41
42 cin.read(postString, contentLength);
43 dataString = postString;
44
45 // search for first '+' character
46 int charLocation = dataString.find("+");
47
48 // search for next '+' character
49 while (charLocation < string::npos) {
50 dataString.replace(charLocation, 1, " ");
51 charLocation = dataString.find("+", charLocation + 1);
52 } // end while
53
54 // find location of firstname
55 int firstStart = dataString.find("firstname=") + 10;
56 int endFirst = dataString.find("&lastname");
57
58 firstname = dataString.substr(firstStart,
59 endFirst - firstStart);
60

Fig. 16.19 Creating a server-side file to store user data. (Part 2 of 5.)

Chapter 16 Web Programming with CGI 919

61 // find location of lastname
62 int lastStart = dataString.find("lastname=") + 9;
63 int endLast = dataString.find("&address");
64
65 lastname = dataString.substr(lastStart,
66 endLast - lastStart);
67
68 // find location of address
69 int addressStart = dataString.find("address=") + 8;
70 int endAddress = dataString.find("&town");
71
72 address = dataString.substr(addressStart,
73 endAddress - addressStart);
74
75 // find location of town
76 int townStart = dataString.find("town=") + 5;
77 int endTown = dataString.find("&state");
78
79 town = dataString.substr(townStart, endTown - townStart);
80
81 // find location of state
82 int stateStart = dataString.find("state=") + 6;
83 int endState = dataString.find("&zipcode");
84
85 state = dataString.substr(stateStart,
86 endState - stateStart);
87
88 // find location of zip code
89 int zipStart = dataString.find("zipcode=") + 8;
90 int endZip = dataString.find("&country");
91
92 zipcode = dataString.substr(zipStart, endZip - zipStart);
93
94 // find location of country
95 int countryStart = dataString.find("country=") + 8;
96 int endCountry = dataString.find("&email");
97
98 country = dataString.substr(countryStart,
99 endCountry - countryStart);
100
101 // find location of e-mail address
102 int emailStart = dataString.find("email=") + 6;
103 int endEmail = dataString.find("&submit");
104
105 email = dataString.substr(emailStart,
106 endEmail - emailStart);
107
108 // output header
109 cout << "Content-Type: text/html\n\n";
110

Fig. 16.19 Creating a server-side file to store user data. (Part 3 of 5.)

920 Web Programming with CGI Chapter 16

111 // output XML declaration and DOCTYPE
112 cout << "<?xml version = \"1.0\"?>"
113 << "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 "
114 << "Transitional//EN\" \"http://www.w3.org/TR/xhtml1"
115 << "/DTD/xhtml1-transitional.dtd\">";
116
117 // output html element and some of its contents
118 cout << "<html xmlns = \"http://www.w3.org/1999/xhtml\">"
119 << "<head><title>Contact Information entered"
120 << "</title></head><body>";
121
122
123
124
125 // file was not opened properly
126 if (!outFile) {
127 cerr << "Error: could not open contact file.";
128 exit(1);
129 } // end if
130
131
132
133
134
135
136
137
138 // output data to user
139 cout << "<table><tbody>"
140 << "<tr><td>First Name:</td><td>"
141 << firstname << "</td></tr>"
142 << "<tr><td>Last Name:</td><td>"
143 << lastname << "</td></tr>"
144 << "<tr><td>Address:</td><td>"
145 << address << "</td></tr>"
146 << "<tr><td>Town:</td><td>"
147 << town << "</td></tr>"
148 << "<tr><td>State:</td><td>"
149 << state << "</td></tr>"
150 << "<tr><td>Zip Code:</td><td>"
151 << zipcode << "</td></tr>"
152 << "<tr><td>Country:</td><td>"
153 << country << "</td></tr>"
154 << "<tr><td>Email:</td><td>"
155 << email << "</td></tr>"
156 << "</tbody></table>"
157 << "</body>\n</html>\n";
158
159 return 0;
160
161 } // end main

Fig. 16.19 Creating a server-side file to store user data. (Part 4 of 5.)

// output to file
ofstream outFile("clients.txt", ios::app);

// append data to clients.txt file
outFile << firstname << " " << lastname << "\n"
 << address << "\n" << town << " "
 << state << " " << country << " "
 << zipcode << "\n" << email
 << "\n\n";

Chapter 16 Web Programming with CGI 921

16.16 Case Study: Shopping Cart
Many businesses’ Web sites contain shopping-cart applications, which allow customers
to buy items conveniently on the Web. The sites record what the consumer wants to pur-
chase and provide an easy, intuitive way to shop online. They do so by using an electronic
shopping cart, just as people would use physical shopping carts in retail stores. As users
add items to their shopping carts, the sites update the carts’ contents. When users “check
out,” they pay for the items in their shopping carts. To see a real-world electronic shop-
ping cart, we suggest going to the online bookstore Amazon.com (www.ama-
zon.com).

The shopping cart implemented in this section (Fig. 16.21–Fig. 16.24) allows users to
purchase books from a fictitious bookstore that sells four books (see Fig. 16.23). This
example uses four scripts, two server-side files and cookies.

Figure 16.21 shows the first of these scripts, the login page. This script is the most
complex of all the scripts in this section. The first if condition (line 39) determines
whether data was posted to the program. The second if condition (line 70) determines
whether the dataString was set (i.e., the decoding completed successfully). The first
time we run this program, both conditions fail, so lines 75–86 output an XHTML form to
the user, as shown in the first screen capture of Fig. 16.21. When the user fills out the form
and clicks the login button, login.cgi is requested again.

Jane Doe
123 Main Street
Boston MA USA 12345
jane@doe.com

Fig. 16.20 Contents of clients.txt data file.

Fig. 16.19 Creating a server-side file to store user data. (Part 5 of 5.)

922 Web Programming with CGI Chapter 16

1 // Fig. 16.21: login.cpp
2 // Program to output an XHTML form, verify the
3 // username and password entered, and add members.
4 #include <iostream>
5
6 using std::cerr;
7 using std::cout;
8 using std::cin;
9 using std::ios;

10
11 #include <fstream>
12
13 using std::ifstream;
14 using std::ofstream;
15
16 #include <string>
17
18 using std::string;
19
20 #include <cstdlib>
21
22 void header();
23 void writeCookie();
24
25 int main()
26 {
27 char query[1024] = "";
28 string dataString = "";
29
30 // strings to store username and password
31 string userName = "";
32 string passWord = "";
33 string newCheck = "";
34
35 int contentLength = 0;
36 int endPassword = 0;
37
38 // data was posted
39 if (getenv("CONTENT_LENGTH")) {
40
41 // retrieve query string
42 contentLength = atoi(getenv("CONTENT_LENGTH"));
43 cin.read(query, contentLength);
44 dataString = query;
45
46 // find username location
47 int userLocation = dataString.find("user=") + 5;
48 int endUser = dataString.find("&");
49
50 // find password location
51 int passwordLocation = dataString.find("password=") + 9;
52
53 endPassword = dataString.find("&new");

Fig. 16.21 Program that outputs a login page. (Part 1 of 7.)

Chapter 16 Web Programming with CGI 923

54
55
56
57
58
59
60 // existing member
61 else
62
63
64
65
66
67 } // end if
68
69 // no data was retrieved
70 if (dataString == "") {
71 header();
72 cout << "<p>Please login.</p>";
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88 } // end if
89
90 // process entered data
91 else {
92
93 // add new member
94 if () {
95 string fileUsername = "";
96 string filePassword = "";
97 bool nameTaken = false;
98
99
100
101
102 // could not open file
103 if (!userData) {
104 cerr << "Could not open database.";
105 exit(1);
106 } // end if

Fig. 16.21 Program that outputs a login page. (Part 2 of 7.)

// new membership requested
if (endPassword > 0)
 passWord = dataString.substr(passwordLocation,
 endPassword - passwordLocation);

passWord = dataString.substr(passwordLocation);

userName = dataString.substr(userLocation, endUser -
 userLocation);

// output login form
cout << "<form method = \"post\" "

<< "action = \"/cgi-bin/login.cgi\"><p>"
<< "User Name: "
<< "<input type = \"text\" name = \"user\"/>
"
<< "Password: "
<< "<input type = \"password\" "
<< "name = \"password\"/>
"
<< "New? <input type = \"checkbox\""
<< " name = \"new\" "
<< "value = \"1\"/></p>"
<< "<input type = \"submit\" value = \"login\"/>"
<< "</form>";

endPassword > 0

// open password file
ifstream userData("userdata.txt", ios::in);

924 Web Programming with CGI Chapter 16

107
108 // read username and password from file
109 while () {
110
111
112
113
114
115 } // end while
116
117 // user name is taken
118 if () {
119 header();
120
121
122
123 } // end if
124
125 // process data
126 else {
127
128 // write cookie
129 writeCookie();
130 header();
131
132
133
134
135 // could not open file
136 if (!userData) {
137 cerr << "Could not open database.";
138 exit(1);
139 } // end if
140
141
142
143
144
145
146
147
148 } // end else
149 } // end if
150
151 // search for password if entered
152 else {
153
154 // strings to store username and password from file
155 string fileUsername = "";
156 string filePassword = "";
157 bool authenticated = false;
158 bool userFound = false;
159

Fig. 16.21 Program that outputs a login page. (Part 3 of 7.)

userData >> fileUsername >> filePassword

// name is already taken
if (userName == fileUsername)
 nameTaken = true;

nameTaken

cout << "<p>This name has already been taken.</p>"
 << ""
 << "Try Again";

// open user data file
ofstream userData("userdata.txt", ios::app);

// write user data to file
userData << "\n" << userName << "\n" << passWord;

cout << "<p>Your information has been processed."
 << ""
 << "Start Shopping</p>";

Chapter 16 Web Programming with CGI 925

160
161
162
163 // could not open file
164 if (!userData) {
165 cerr << "Could not open database.";
166 exit(1);
167 } // end if
168
169 // read in user data
170 while () {
171
172
173
174
175
176
177 // username was found
178 if ()
179 userFound = true;
180 } // end while
181
182 // user is authenticated
183 if () {
184 writeCookie();
185 header();
186
187
188
189
190
191 } // end if
192
193 // user not authenticated
194 else {
195 header();
196
197 // password is incorrect
198 if ()
199
200
201
202
203
204 // user is not registered
205 else
206
207
208
209
210 } // end else
211 } // end else
212 } // end if

Fig. 16.21 Program that outputs a login page. (Part 4 of 7.)

// open password file
ifstream userData("userdata.txt", ios::in);

userData >> fileUsername >> filePassword

// username and password match
if (userName == fileUsername &&
 passWord == filePassword)
 authenticated = true;

userName == fileUsername

authenticated

cout << "<p>Thank you for returning, "
 << userName << "!</p>"
 << ""
 << "Start Shopping";

userFound
cout << "<p>You have entered an incorrect "
 << "password. Please try again.</p>"
 << ""
 << "Back to login";

cout << "<p>You are not a registered user.</p>"
 << ""
 << "Register";

926 Web Programming with CGI Chapter 16

213
214 cout << "</body>\n</html>\n";
215 return 0;
216
217 } // end main
218
219 // function to output header
220 void header()
221 {
222 // output header
223 cout << "Content-Type: text/html\n\n";
224
225 // output XML declaration and DOCTYPE
226 cout << "<?xml version = \"1.0\"?>"
227 << "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 "
228 << "Transitional//EN\" \"http://www.w3.org/TR/xhtml1"
229 << "/DTD/xhtml1-transitional.dtd\">";
230
231 // output html element and some of its contents
232 cout << "<html xmlns = \"http://www.w3.org/1999/xhtml\">"
233 << "<head><title>Login Page</title></head>"
234 << "<body>";
235
236 } // end header
237
238 // function to write cookie data
239 void writeCookie()
240 {
241 string expires = "Friday, 14-MAY-04 16:00:00 GMT";
242 cout << "Set-Cookie: CART=; expires="
243 << expires << "; path=\n";
244
245 } // end writeCookie

Fig. 16.21 Program that outputs a login page. (Part 5 of 7.)

Chapter 16 Web Programming with CGI 927

Fig. 16.21 Program that outputs a login page. (Part 6 of 7.)

928 Web Programming with CGI Chapter 16

If the user checked the New checkbox on the Web page to create a new membership,
the condition on line 94 evaluates to true. Next, we open userdata.txt (line 100)—
the file that contains all the usernames and passwords. Lines 109–115 read through this file,
comparing each username with the name entered. If the name is already in the list, lines
120–122 output a message to the user indicating that the name has been taken, and a link
to the form is provided. Otherwise, the new user is added to the list. The file is opened again
on line 133—this time for appending. Line 142 adds the new user information to user-
data.txt in the format

Bernard
Jones

Each username and password is separated by a newline character. Lines 144–146 provide
a hyperlink to the script of Fig. 16.22, which allows users to purchase items.

The last possible scenario for this script is for returning users (lines 152–211). This
portion of the program executes when the user enters a name and password but does not
select the New checkbox (i.e., the else of line 152 is evaluated). In this case, we assume
that the user already has a username and password in userdata.txt. Lines 170–180
read through userdata.txt in an attempt to locate the username entered. If the user-
name is found and the password entered is correct (lines 173–174), boolean variable
authenticated is set to true. Line 183 determines whether the user has been
authenticated. Function writeCookie is called to initialize the cookie and to remove
existing data from prior sessions (line 184). The cookie, which is named CART (line 242),
is used by other scripts to store book information. A message is output welcoming the
user back to the Web site and providing a link to purchase books (shop.cgi) on lines
187–190.

If the user was not authenticated, the program determines whether the user was found
(line 198). If the user was found but not authenticated, a message is output indicating that
the password is invalid. A hyperlink is provided to the login page (<a href="/cgi-
bin/login.cgi">), where the user can attempt to login again. If neither the username
nor the password were found, an unregistered user has attempted to sign on (line 205). A
message is output indicating that the user does not have the proper authorization to access
the page, and lines 206–208 provide a link that allows the user to attempt another login.

Figure 16.22 uses the values in catalog.txt (Fig. 16.25) to output the items that
the user can purchase. The while structure (lines 73–93) outputs a table containing the
items. The last column for each row includes a button for adding the item to the shopping

Fig. 16.21 Program that outputs a login page. (Part 7 of 7.)

Chapter 16 Web Programming with CGI 929

cart. Hidden form fields are specified for each book and its associated information. Lines
73–77 output the different values for each book, and lines 83–93 output a form containing
submit buttons for purchasing books.

When a user purchases a book, the viewcart.cgi script is requested, and the ISBN
for the book to be purchased is sent to the script. Figure 16.23 begins by reading the value
of the cookie stored on the user’s system on line 38. Any existing cookie data is stored in
string cookieString (line 39). The entered ISBN number from the form of
Fig. 16.22 is stored in string isbnEntered (line 54). The script determines whether
the cart already contains data (line 65). If not, the cookieString is given the value of
the entered ISBN number (line 66). If the cookie already contains data, the entered ISBN
is appended to the existing cookie data (line 70). The new book is stored in the CART cookie
on lines 73–74. The cart’s contents are output in a table by calling function outputBooks
(line 95).

1 // Fig. 16.22: shop.cpp
2 // Program to display available books.
3 #include <iostream>
4
5 using std::cerr;
6 using std::cout;
7 using std::cin;
8 using std::ios;
9

10 #include <istream>
11
12 #include <fstream>
13
14 using std::ifstream;
15 using std::ofstream;
16
17 #include <string>
18
19 using std::string;
20
21 #include <cstdlib>
22
23 void header();
24
25 int main()
26 {
27 // variables to store product information
28 char book[50] = "";
29 char year[50] = "";
30 char isbn[50] = "";
31 char price[50] = "";
32
33 string bookString = "";
34 string yearString = "";
35 string isbnString = "";
36 string priceString = "";

Fig. 16.22 CGI script that allows users to buy a book. (Part 1 of 3.)

930 Web Programming with CGI Chapter 16

37
38 bool nameTaken = false;
39
40
41
42
43 // file could not be opened
44 if (!userData) {
45 cerr << "Could not open database.";
46 exit(1);
47 } // end if
48
49 header(); // output header
50
51
52
53
54
55
56
57 // file is open
58 while (userData) {
59
60 // retrieve data from file
61
62 bookString = book;
63
64
65 yearString = year;
66
67
68 isbnString = isbn;
69
70
71 priceString = price;
72
73 cout << "<tr>"
74 << "<td>" << bookString << "</td>"
75 << "<td>" << yearString << "</td>"
76 << "<td>" << isbnString << "</td>"
77 << "<td>" << priceString << "</td>";
78
79 // file is still open after reads
80 if (userData)
81
82
83
84
85
86
87
88
89

Fig. 16.22 CGI script that allows users to buy a book. (Part 2 of 3.)

// open file for input
ifstream userData("catalog.txt", ios::in);

// output available books
cout << "<center>
Books available for sale
"
 << "Sign Out"
 << "

"
 << "<table border = \"1\" cellpadding = \"7\" >";

userData.getline(book, 50);

userData.getline(year, 50);

userData.getline(isbn, 50);

userData.getline(price, 50);

// output form with buy button
cout << "<td><form method=\"post\" "
 << "action=\"/cgi-bin/viewcart.cgi\">"
 << "<input type=\"hidden\" name=\"add\""
 << "value=\"true\"/>"
 << "<input type=\"hidden\" name=\"isbn\""
 << "value=\"" << isbnString << "\"/>"
 << "<input type=\"submit\""

Chapter 16 Web Programming with CGI 931

Figure 16.24 allows the user to log out of the shopping-cart application. This script
outputs a message to the user and calls writeCookie (line 20), thus erasing the current
information in the shopping cart.

90
91
92
93 cout << "</tr>\n";
94
95 } // end while
96
97 cout << "</table></center></body></html>";
98 return 0;
99 }
100
101 // function to output header information
102 void header()
103 {
104 // output header
105 cout << "Content-Type: text/html\n\n";
106
107 // output XML declaration and DOCTYPE
108 cout << "<?xml version = \"1.0\"?>"
109 << "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 "
110 << "Transitional//EN\" \"http://www.w3.org/TR/xhtml1"
111 << "/DTD/xhtml1-transitional.dtd\">";
112
113 // output html element and some of its contents
114 cout << "<html xmlns = \"http://www.w3.org/1999/xhtml\">"
115 << "<head><title>Login Page</title></head>"
116 << "<body>";
117 } // end header

1 // Fig. 16.23: viewcart.cpp
2 // Program to view books in the shopping cart.
3 #include <iostream>
4
5 using std::cerr;
6 using std::cout;
7 using std::cin;
8 using std::ios;
9

10 #include <istream>
11
12 #include <fstream>
13
14 using std::ifstream;
15 using std::ofstream;
16

Fig. 16.23 CGI script that allows users to view their carts' content. (Part 1 of 5.)

Fig. 16.22 CGI script that allows users to buy a book. (Part 3 of 3.)

<< "value=\"Buy\"/>\n"
<< "</form></td>\n";

932 Web Programming with CGI Chapter 16

17 #include <string>
18
19 using std::string;
20
21 #include <cstdlib>
22
23 void outputBooks(const string &, const string &);
24
25 int main()
26 {
27 // variable to store query string
28 char query[1024] = "";
29
30
31 string dataString = "";
32 string cookieString = "";
33 string isbnEntered = "";
34 int contentLength = 0;
35
36
37
38
39
40
41
42 // data was entered
43 if (getenv("CONTENT_LENGTH")) {
44 contentLength = atoi(getenv("CONTENT_LENGTH"));
45 cin.read(query, contentLength);
46 dataString = query;
47
48 // find location of isbn value
49 int addLocation = dataString.find("add=") + 4;
50 int endAdd = dataString.find("&isbn");
51 int isbnLocation = dataString.find("isbn=") + 5;
52
53 // retrieve isbn number to add to cart
54 isbnEntered = dataString.substr(isbnLocation);
55
56 // write cookie
57 string expires = "Friday, 14-MAY-10 16:00:00 GMT";
58
59
60
61
62
63
64 // no cookie data exists
65 if ()
66
67

Fig. 16.23 CGI script that allows users to view their carts' content. (Part 2 of 5.)

char *cartData; // variable to hold contents of cart

// retrieve cookie data
if (getenv("HTTP_COOKIE")) {
 cartData = getenv("HTTP_COOKIE");
 cookieString = cartData;
} // end if

int cartLocation = cookieString.find("CART=") + 5;

// cookie exists
if (cartLocation > 0)
 cookieString = cookieString.substr(cartLocation);

cookieString == ""
cookieString = isbnEntered;

Chapter 16 Web Programming with CGI 933

68 // cookie data exists
69 else
70
71
72
73
74
75
76 } // end if
77
78 // output header
79 cout << "Content-Type: text/html\n\n";
80
81 // output XML declaration and DOCTYPE
82 cout << "<?xml version = \"1.0\"?>"
83 << "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 "
84 << "Transitional//EN\" \"http://www.w3.org/TR/xhtml1"
85 << "/DTD/xhtml1-transitional.dtd\">";
86
87 // output html element and some of its contents
88 cout << "<html xmlns = \"http://www.w3.org/1999/xhtml\">"
89 << "<head><title>Shopping Cart</title></head>"
90 << "<body><center>"
91 << "<p>Here is your current order:</p>";
92
93
94
95
96
97 cout << "</body></html>\n";
98 return 0;
99
100 } // end main
101
102 // function to output books in catalog.txt
103 void outputBooks(const string &cookieRef, const string &isbnRef)
104 {
105 char book[50] = "";
106 char year[50] = "";
107 char isbn[50] = "";
108 char price[50] = "";
109
110 string bookString = "";
111 string yearString = "";
112 string isbnString = "";
113 string priceString = "";
114
115 // open file for input
116 ifstream userData("catalog.txt", ios::in);
117

Fig. 16.23 CGI script that allows users to view their carts' content. (Part 3 of 5.)

cookieString += "," + isbnEntered;

// set cookie
cout << "Set-Cookie: CART=" << cookieString << "; expires="
 << expires << "; path=\n";

// cookie data exists
if (cookieString != "")
 outputBooks(cookieString, isbnEntered);

934 Web Programming with CGI Chapter 16

118 // file could not be opened
119 if (!userData) {
120 cerr << "Could not open database.";
121 exit(1);
122 } // end if
123
124
125
126
127
128
129 // file is open
130 while (userData) {
131
132 // retrieve book information
133 userData.getline(book, 50);
134 bookString = book;
135
136 // retrieve year information
137 userData.getline(year, 50);
138 yearString = year;
139
140 // retrieve isbn number
141 userData.getline(isbn, 50);
142 isbnString = isbn;
143
144 // retrieve price
145 userData.getline(price, 50);
146 priceString = price;
147
148
149
150 // match has been made
151 if (match > 0 || isbnRef == isbnString) {
152
153
154
155
156
157
158
159
160
161
162 } // end if
163
164 cout << "</form></tr>";
165
166 } // end while
167
168 // output link to add more books
169
170 } // end outputBooks

Fig. 16.23 CGI script that allows users to view their carts' content. (Part 4 of 5.)

// output link to log out and table to display books
cout << "Sign Out";
cout << "

";
cout << "<table border = 1 cellpadding = 7 >";

int match = cookieRef.find(isbn);

// output table row with book information
cout << "<tr>"
 << "<form method=\"post\""
 << "action=\"/cgi-bin/viewcart.cgi\">"
 << "<td>" << bookString << "</td>"
 << "<td>" << yearString << "</td>"
 << "<td>" << isbnString << "</td>"
 << "<td>" << priceString << "</td>";

cout << "Back to book list";

Chapter 16 Web Programming with CGI 935

Figure 16.25 shows the contents of the catalog.txt file. This file must reside in
the same directory where the CGI scripts reside for this shopping-cart application to work
correctly.

1 // Fig. 16.24: logout.cpp
2 // Program to log out of the system.
3 #include <iostream>
4
5 using std::cout;
6
7 #include <string>
8
9 using std::string;

10
11 #include <ctime>
12
13 #include <cstdlib>
14
15 void writeCookie();
16
17 int main()
18 {
19 // write the cookie
20 writeCookie();
21
22 // output header
23 cout << "Content-Type: text/html\n\n";
24
25 // output XML declaration and DOCTYPE
26 cout << "<?xml version = \"1.0\"?>"
27 << "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 "
28 << "Transitional//EN\"";
29

Fig. 16.24 Logout program. (Part 1 of 2.)

Fig. 16.23 CGI script that allows users to view their carts' content. (Part 5 of 5.)

936 Web Programming with CGI Chapter 16

16.17 Internet and Web Resources

Apache

www.apache.org
This is the product home page for the Apache HTTP server. Users may download Apache from this
site.

www.apacheweek.com
This online magazine contains articles about Apache jobs, product reviews and other information
concerning Apache software.

linuxtoday.com/stories/18780.html
This site contains an article about the Apache HTTP server and the platforms that support it. It also
contains links to other Apache articles.

30 // output html element and its contents
31 cout << "<html xmlns = \"http://www.w3.org/1999/xhtml\">"
32 << "<head><title>Logged Out</title></head>"
33 << "<body>"
34 << "<center><p>You are now logged out
"
35 << "You will be billed accordingly
"
36 << "To login again, "
37 << "click here"
38 << "</body></html>\n";
39
40 return 0;
41
42 } // end main
43
44 // function to write cookie
45 void writeCookie()
46 {
47
48
49
50
51
52
53
54 } // end writeCookie

Fig. 16.24 Logout program. (Part 2 of 2.)

// string containing expiration date
string expires = "Friday, 14-MAY-10 16:00:00 GMT";

// set cookie
cout << "Set-Cookie: CART=; expires=" << expires
 << "; path=\n";

Chapter 16 Web Programming with CGI 937

CGI

www.gnu.org/software/cgicc/cgicc.html
This site contains a free open-source CGI library for creating CGI scripts in C++.

www.hotscripts.com
This site contains a rich collection of scripts for performing image manipulation, server administra-
tion, networking, etc. using CGI.

www.jmarshall.com/easy/cgi
This page contains a brief explanation of CGI for those with programming experience.

www.speakeasy.org/~cgires
This site contains a collection of CGI-related tutorials and scripts.

www.w3.org/CGI
This World Wide Web Consortium page discusses CGI security issues.

www.w3.org/Protocols
This World Wide Web Consortium site contains information on the HTTP specification and links to
news, mailing lists and published articles.

SUMMARY
• Web servers respond to client requests by providing resources, such as XHTML documents.

• Web servers and clients communicate with each other via the platform-independent Hypertext
Transfer Protocol (HTTP).

• The most common HTTP request types are get and post; these requests send client form data to a
Web server.

• The get request sends form content as part of the URL; the post request attaches form contents to
the end of an HTTP request. The data sent in a post request are not part of the URL and cannot be
seen by the user.

• Browsers often cache Web pages for quick reloading. However, browsers typically do not cache
the server’s response to a post request, because the information might have changed.

• The information tier maintains data for the application in a database.

Visual Basic .NET How to Program
2002
0-13-029363-6
$50.00
C# How to Program
2002
0-13-062221-4
$49.95
C How to Program 3e
2001
0-13-089572-5
$50.00
Java How to Program 4e
2002
0-13-034151-7
$49.95

Fig. 16.25 Contents of catalog.txt.

938 Web Programming with CGI Chapter 16

• A Web server is part of a multi-tier application—sometimes referred to as an n-tier application. A
multi-tier application divides functionality into separate tiers. The three-tier application contains
an information tier, a middle tier and a client tier.

• The middle tier implements business logic and presentation logic to control interactions between
application clients and application data. A Web server is a middle-tier application.

• The client tier is the application’s user interface. The client interacts with the middle tier to make
requests and to retrieve data from the information tier. The client then displays data retrieved from
the middle tier to the user.

• The Apache HTTP server, developed by the Apache Group, is the most popular Web server in use
today. It runs on Windows and non-Windows platforms.

• A virtual directory is an alias for an existing directory on a local machine.

• The Common Gateway Interface (CGI) describes a set of protocols through which applications
(commonly called CGI scripts or CGI programs) can interact with Web servers and interact (indi-
rectly) with clients.

• CGI is “common” in the sense that it is not specific to any particular operating system (such as
Linux or Windows) or to any one programming language.

• A Web page, in its simplest form, is nothing more than an XHTML document. This document is
just a plain text file containing markings (markup or elements) that describe to a Web browser how
to display and format the information in the document.

• Hypertext information creates links to different pages or to other portions of the same page.

• Any XHTML file available for viewing over the Internet has a URL (Universal Resource Locator)
associated with it. The URL contains information that directs a browser to the resource that the
user wishes to access.

• The hostname is the name of the computer where the resource resides and is translated into an IP
address, which identifies the server on the Internet.

• To request a resource, the browser first sends an HTTP request message to the server. The server
responds with a line indicating the HTTP version, followed by a numeric code and a phrase de-
scribing the status of the transaction. The server normally then sends one or more HTTP headers,
which provide additional information about the data being sent. The header or set of headers is fol-
lowed by a blank line, which indicates that the server finished sending HTTP headers. Then the
server sends the contents of the requested resource, and the connection is terminated. The client-
side browser interprets the XHTML it receives and displays the results.

• A properly configured Web server will recognize a CGI script and execute it. A resource usually
is designated as a CGI script in one of two ways: Either it has a specific filename extension (such
as .cgi or .exe), or it is located in a special directory (often /cgi-bin). The server adminis-
trator must give permission for remote clients to access and execute CGI scripts.

• When the server recognizes that the resource requested is a CGI script, the server executes the
script. The output is piped to the Web server. Finally, the Web server adds an additional line to the
output indicating the status of the HTTP transaction (such as HTTP/1.1 200 OK, for success)
and sends the whole body of text to the client. The browser on the client side then interprets the
output and displays the results appropriately.

• With a CGI script, programmers must include the Content-Type header explicitly, whereas
with a normal XHTML document, the header would be added by the Web server.

• The CGI protocol for output to be sent to a Web browser consists of printing to standard output
the Content-Type header, a blank line and the data (XHTML, plain text, etc.) to be output.

• CGI-enabled Web servers set environment variables that provide information about both the serv-
er’s and the client’s script-execution environment.

Chapter 16 Web Programming with CGI 939

• The environment variable QUERY_STRING provides a mechanism that enables programmers to
supply any sort of data to their CGI scripts. The QUERY_STRING variable contains information
that is appended to a URL. A question mark character (?) delimits the resource requested from the
query string.

• Data placed in a query string can be structured in a variety of ways, provided that the CGI script
that reads the string knows how to interpret the encoded data.

• Forms provide another way for users to input information that is sent to a CGI script.

• The <form> element generally takes two attributes. The first attribute is action, which speci-
fies the action to take when the user submits the form. The second attribute is method, which is
either GET or POST.

• Using get with a form causes data to be passed to the CGI script through environment variable
QUERY_STRING.

• The POST method enables CGI scripts to interact with servers via standard input.

• With POST, data is encoded just as with QUERY_STRING, but the QUERY_STRING environment
variable is not set. Instead, the POST method sets the environment variable CONTENT_LENGTH
to indicate the number of characters of data that are being sent or posted, then function read is
used with STDIN to obtain the data.

• Web browsers encode the form data before it is sent. This means that spaces are replaced with plus
signs, and certain other symbols (such as the apostrophe) are converted into their ASCII value
equivalent and displayed in hexadecimal notation (preceded by a percent sign).

• A CGI script can supply HTTP headers in addition to Content-Type. In most cases, the server
passes these extra headers to the client untouched.

• The CGI protocol indicates that certain types of headers output by a CGI script are to be handled
by the server, rather than be passed directly to the client.

• Function getenv from library <cstdlib> returns a character array containing the value of the
CGI environment variable passed to it.

TERMINOLOGY
action attribute of element form DNS lookup
Apache HTTP Server domain name
asctime domain name system (DNS)
<body> element dynamic vs. static Web content
bottom tier dynamic Web content
button type attribute for input element Extensible HyperText Markup Language

 (XHTML)cache
/cgi-bin directory file type attribute for input elements
CGI (Common Gateway Interface) filepath
.cgi file extension form
CGI program form element
CGI script fully qualified host name
CGI specification get (HTTP request)
checkbox type attribute for input element getenv function of <cstdlib>
client tier head element
CONTENT_LENGTH environment variable hidden type attribute for input elements
Content-Type header host
.cpp file extension hostname
data tier htdocs directory

940 Web Programming with CGI Chapter 16

SELF-REVIEW EXERCISES
16.1 Fill in the blanks in each of the following statements:

a) The two most common HTTP request types are and .
b) Browsers often Web pages for quick reloading.
c) In a three-tier application, a Web server is typically part of the tier.
d) In the URL http://www.deitel.com/books/downloads.htm, the part that

consists of www.deitel.com is the of the server, where a client can find
the desired resource.

e) A(n) document is a text file containing markings that describe to a Web
browser how to display and format the information in the document.

f) The environment variable provides a mechanism for supplying data to CGI
scripts.

g) A common way of reading input from the user is to implement .

16.2 State whether each of the following is true or false. If false, explain why.
a) Web servers and clients communicate with each other through the platform-independent

HTTP.
b) Web servers often cache Web pages for reloading.
c) The information tier implements business logic to control the type of information that is

presented to a particular client.
d) A dynamic Web page is a Web page that is not created programmatically.
e) We put data into a query string using a format that consists of a series of name-value pairs

joined with exclamation points (!).

html element post (HTTP request)
HTTP (Hypertext Transfer Protocol) QUERY_STRING environment variable
HTTP connection radio type attribute for input element
HTTP header redirect
HTTP host remote Web server
HTTP method request method
HTTP transaction request type
HTTP_USER_AGENT environment variable reset type attribute for input element
HyperText Markup Language (HTML) select element
HyperText Transfer Protocol (HTTP) standard output
image type attribute for input element static Web content
information tier submit type attribute for input element
input element text type attribute for input element
IP address textarea element
local Web server title element
localhost top tier
localtime top-level domain (TLD)
markup URL (Universal Resource Locator)
method attribute of form element virtual directory
middle tier Web server
multi-tier application XHTML
n-tier application XHTML element
open source XHTML form
password type attribute for input element XHTML form element
pipe

Chapter 16 Web Programming with CGI 941

f) Using a CGI script is more efficient than using an XHTML document.
g) The post method of submitting form data is preferable when sending personal informa-

tion to the Web server.

ANSWERS TO SELF-REVIEW EXERCISES
16.1 a) get and post. b) cache. c) middle. d) hostname. e) XHTML. f) QUERY_STRING.
g) forms.

16.2 a) True. b) True. Web browsers often cache Web pages for quick reloading c) False. The mid-
dle tier implements business logic and presentation logic to control interactions between application
clients and application data. d) False. A dynamic Web page is a Web page that is created program-
matically. e) False. The pairs are joined with an ampersand (&). f) False. XHTML documents are
more efficient than CGI scripts because XHTML documents do not need to be executed on the server
side before they are output to the client. g) True.

EXERCISES
16.3 Define the following terms:

a) HTTP.
b) Multi-tier application.
c) Request method.

16.4 Explain the difference between the get request type and the post request type. When is it ideal
to use the post request type?

16.5 Write a CGI script that prints the squares of the integers from 1 to 10 on separate lines.

16.6 Write a CGI script that receives as input three numbers from the client and returns a statement
indicating whether the three numbers could represent an equilateral triangle (all three sides are the
same length), an isosceles triangle (two sides are the same length) or a right triangle (the square of
one side is equal to the sum of the squares of the other two sides.)

16.7 Write a soothsayer script that allows the user to submit a question. When the question is sub-
mitted, the script should choose a random response from a list of vague answers and return a new page
displaying the answer.

16.8 Modify the program of Fig. 16.14 to incorporate the opening XHTML form and the process-
ing of the data into a single CGI script (i.e., combine the XHTML of Fig. 16.13 into the CGI script
of Fig. 16.14.) When the CGI script is requested initially, the form should be displayed. When the
form is submitted, the CGI script should execute.

16.9 Modify the shopping-cart application to enable users to remove items from the cart.

