
Process 1
Outgoing channels

2 sent 1,2,3,4,5,6
3 sent 1,2,3,4,5,6

Incoming channels

Process 3
Outgoing channels

2 sent 1,2,3,4,5,6,7,8
Incoming channels

1 received 1,2,3 stored 4,5,6
2 received 1,2,3 stored 4
4 received 1,2,3

Process 2
Outgoing channels

3 sent 1,2,3,4
4 sent 1,2,3,4

Incoming channels
1 received 1,2,3,4 stored 5,6
3 received 1,2,3,4,5,6,7,8

Process 4
Outgoing channels

3 sent 1,2,3
Incoming channels

2 received 1,2 stored 3,4

Figure 14.6 An Example of a Snapshot

if (!token_present)
{

clock++; /* Prelude */
broadcast (Request, clock, i);
wait (access, token);
token_present = true;

}

token_held = true;
<critical section>;

token[i] = clock; /* Postlude */
token_held = false;
for (int j = i + 1; j < n; j++)
{

if (request(j) > token[j] && token_present)
{

token_present = false;
send (access, token[j]);

}
}
for (j = 1; j <= i-1; j++)
{

if (request(j) > token[j] && token_present)
{

token_present = false;
send(access, token[j]);

}
}

(a) First Part

if (received (Request, k, j))
{

request (j) = max(request(j), k);
if (token_present && !token_held)

<text of postlude>;
}

(b) Second Part

Notation
send (j, access, token) end message of type access, with token, by process j
broadcast (request, clock, i) send message from process i of type request, with time-

stamp clock, to all other processes
received (request, t, j) receive message from process j of type request, with time-

stamp t

Figure 14.11 Token-Passing Algorithm (for process Pi)

if (e(T2) < e(T1))
halt_T2 ('wait');

else
kill_T2 ('die');

(a) Wait-die method

if (e(T2) < e(T1))
kill_T1 ('wound');

else
halt_T2 ('wait');

(b) Wound-wait method

Figure 14.13 Deadlock Prevention Methods

