
A System for Assessing the Knowledge and Skills of
Students in Computer Programming

Nikolay Kirov
New Bulgarian University

ul. Montevideo 21, Sofia, Bulgaria
Email: nkirov@nbu.bg

Abstract—This article presents the author’s experience in
teaching programming to university students in first and second
year. The system for assessing the knowledge and skills of students
is an essential part of teaching. It aims not only to assess students,
but also to help improving their knowledge. The importance
and difficulty of Computer Programming requires specific and
unconventional approach to this activity. The article discusses
all three elements of ongoing assessment (tests for knowledge,
homeworks, and practical programming skills), as well as the
rules for final exams and final assessment.

I. INTRODUCTION

“Assessment is an ongoing process aimed at understanding
and improving student learning. It involves making expec-
tations explicit and public; setting appropriate criteria and
high standards for learning quality; systematically gathering,
analyzing, and interpreting evidence to determine how well
performance matches those expectations and standards, and
using the resulting information to document, explain, and
improve performance.” Angelo [12].

Teaching of computer programming for undergraduate stu-
dents is a difficult task for every teacher. It is determined of
specific features of programming.

This subject is related to the acquisition of practical skills in
writing programs and the successful learning concludes with
unaided writing of program codes. For that reason teaching
programming is composed in two parts – lectures and labs.

In this paper we have in mind three courses which usually
are proposed from first to third semester: Introduction to
programming, Object-oriented programming, and Algorithms
and data structures

II. POINTS ASSESSMENT SYSTEM

Assessment rules of knowledge and skills are announced
at the beginning of every semester. They are also published in
the course website.

The assessment system is based on points. The student
collects points during the semester and the final grade depends
of these points. The next left side table shows the correspon-
dence of the obtained points and the grades in the scale of
grades based on six. The right side table represent the US-
grade system, applied for a programming course [11]:

Points Mark
0 – 49 2
50 – 59 3
60 – 75 4
76 – 89 5
90 – 100 6

Total Grade
≥ 93 A
90 to < 93 A–
87 to < 90 B+
83 to < 87 B
80 to < 83 B–
75 to < 80 C+
70 to < 75 C
65 to < 70 C–
63 to < 65 D+
60 to < 63 D
50 to < 60 D–
0 to < 50 F

A. Current Assessment and Semester Exam

Universities’ assessment systems in England and the U.S.
allow the student to obtain final evaluation in an academic
discipline at the end of the semester without having to appear
on semester examination. For this purpose during the semester
students are gaining points from the performance of different
tasks. In some other assessment systems, where the semester
exam is mandatory, the current assessment gives only a part
of the final grade.

The current assessment are formed of:

• Three tests – first, second and final (10+10+20 = 40
points)

• Three exams of practice (10 + 10 + 10 = 30 points)

• Three homeworks (10 + 10 + 10 = 30 points)

Usually the lecturer/instructor gives additional “bonus”
points at the end of the semester. They are not more than
10 and may be given for regular attendance of classes, par-
ticipation and performance in programming competitions, for
answers to questions asked during lectures, etc.

In two cases, the student must appear at the semester
(terminal) exam: if he/she has collected under 50 points in
the current assessment or if he/she wants to raise his/her final
score.

Semester examination consists of:

• Final test for 40 points.

• Final control practice for 20 points.

• Written exam for 20 points.

• Interview (oral exam) for 20 points.



Usually the last lecture of the semester is the final test,
and the labs are final exam of practice. The results of these
are counted for formation of current (continuous) assessment
as well as for semester exam if the student should pass such
examination. On the date of the semester exam, students can
optionally to fill the final test and/or final exam of practice. In
this case if he/she gains more points we count these points for
final evaluation.

III. TESTS

The students’ tests are of multiple choice type. Each
question has proposals for 4 answers marked with a), b), c) and
d). The proposals can be correct or incorrect (true or false).
For each question all variations (with repetitions of elements
true and false) are possible, i.e.

• All are correct tttt,

• Three are correct tttf, ttft, tftt, fttt,

• Two are true ttff, tftf, tfft, fttf, ftft, ffft,

• One is correct tfff, ftff, fftf, ffft,

• No correct ffff.

The number of options is 42 = 16, so the probability of
guessing the answer is 6.25%.

In the test class each student receives a piece of paper
with the test. All tests are different, which largely eliminates
the element of copying from the neighbour in completing the
test.

A. Preparation

Preparation of the test involves the choice and formulation
of the questions and selecting answers (proposals for answer-
ing) – true and false. Since each question in an individual test
contains four proposals, the question should have at least 4
responses. In order to avoid copying from student’s neighbor
(in the case of identical responses), it is a good idea to
prepare at least 12 suggestions for answering each question.
The questions and proposals are prepared in the form of a plain
text file. This file is input data to a computer program that
generates individual tests. We use a random number generator
to select the questions and the answers for each individual test.
Also a 4-digit identifier is generated for each test. Most often
an individual test contains from 10 to 20 questions. Optionally,
we can give the total number of correct answers.

The program generates a LATEX [5] file with the specified
number of tests. After processing the file, we obtain ps or pdf
file which is ready for printing. The program also generates a
file with the answers of every individual test.

At least one week before the test day the questions and
two sample answers (correct and incorrect propositions) are
published on the course website. Thus, students have the
opportunity to learn pre-test and can contact the instructor for
clarification or consultation.

B. Implementation

On the test day, prior to the distribution of individual tests
the rules are recalled:

• During the test students can use lectures, textbooks
and any other printed materials.

• On a separate sheet of paper or using a special
template students must write their answers:

◦ positive (yes, true, correct),
◦ negative (no, false, incorrect) or
◦ neutral (–, nothing, I don’t know).

• If the students have questions about ambiguities in the
test during the test time, the instructor can answer the
questions personally.

When a question was asked by several students it is announced
to all, along with the answer. Sometimes lecture slides can be
shown which explicitly or more often implicitly contains the
answer of the question.

Now about the phenomenon of copying and cheating. The
classical approach is that when the student make a test or
quiz, he/she must show what has been learned and hence it is
prohibited for him/her to use external sources of information.
In this case the learning material should be memorized and
then remembered or reproduced or should be applied – for
example in solving problems or writing programming code. In
the specific activity of programming, the main goal is the skill
to writing correct code, i.e. the final product is a computer
program. This is a largely creative process and limiting use of
information is completely pointless. Suppose, for example, a
manager of some IT company gives the programmer a task to
write a software and not allow him to use literature. On the
contrary, the requirement is usually to find useful manuals and
books and to create software according to the latest trends in
the specific areas. I think this approach should be applied at
the “student bench”, too.

The purpose of the test is not only to check students’
knowledge, but also urge them to open the textbook, to seek
specific information there and to make logical connections
between the test questions and the text written in the textbook.

The time for a test is two academic hours which is equal
to one lecture in many universities.

C. Checking by the teacher

In checking of each individual test, every question receives
test points in the range [−4, 4]. They are the sum of points for
each answer, which can be:

• +1 when the student gave the correct answer (yes or
no);

• −1 for an incorrect answer;

• 0 if answered “do not know”.

For entire individual test the points for each question is
summarized. Let the test contain N questions, and let one
particular test collect t test points (t ≤ 4N ). If the test gives

M exam points, this individual test gives the student e =
tM

4N



exam points. If e is not an integer, we consider the smallest
integer greater than e – rounding up, i.e. in favor of student.

Often in the literature we can find recommendations of the
type: “It is not recommended assignment of penalty points for
an incorrect answer because then the tested student is afraid
to answer, if not fully satisfied, and so he/she does not show
true level of his/her knowledge/skills”[3]. My argument for not
complying with this rule is again that the programming is a
specific activity and knowledge in this area must be clear – the
programmer has to give a clear account of what is known and
what is not known. One tiny mistake in a computer program
(e.g. absence of a comma) can lead to completely unpredictable
consequences – from “innocent” spelling error in some text to
endangering human life or loss of spacecraft.

D. Checking by the student

At the beginning of next lecture the lecturer announces
test results and return tests to the students. Each student should
carefully see what is wrong, to consider whether he/she agrees
with the marked mistakes and if something is not clear, ask the
instructor. The goal of this check-up is that the students realize
their mistakes, which obviously helps for better acquisition of
the educational material.

Furthermore, it is not easy to formulate short and exact
questions. Also some proposals for answers can be not very
clear. A good practice is to accept the views of students
who interpret some questions or responses differently and to
increase accordingly their exam points.

IV. HOMEWORK

There are three homeworks in one semester. Students have
between one and two weeks from setting the homework to its
submission for check-up.

First, a list of tasks is created, depending on the number of
students and nature of the material. Some tasks are directly
related to the exercises in the textbook, while others are
extensions of the examples discussed in the lectures and there
are such for which the student must find and study topics on
the Internet (for example algorithms).

The fixing of a task number to a particular student depends
on his/her faculty number. If there are n prepared tasks and
faculty number of the student is F , then the number of his/her
task is remainder of integer division (arithmetic operation C
and C++): f % n or math module: f mod n. Thus, normally
one task falls on more than one student. This stimulates
teamwork for solving task, which is an important element
of the preparation of programmers. Indeed, the possibility
remains one student to do the homework, and others to copy
it.

Completed programs in form of source code are sent
to the instructors of labs via e-mail or using the Learning
Management System “Moodle”. The check-up and evaluation
is done in the presence of students. Sometimes, but for some
courses as a rule, leading the exercises requires the student
himself/herself to submit the homework and bring the text
of the program, compile it, test the code with the examples
set by the instructor and explain the algorithms and their
implementations. Thus, the assessment may be reduced if it

is apparent that the student has copied the program and not
able to clarify it.

V. EXAM OF PRACTICE

Exams of practice are made in lab classes. They are
assignments for writing programming codes. The codes should
be able to compile successfully and then to pass the tests with
inputs given by the instructor. Also, the students should be able
to explain the algorithms and techniques used in writing the
codes. The exams of practice are the most important elements
of the evaluation, because they summarize the knowledge
from the lectures and the experience from labs classes and
homeworks.

VI. WRITTEN EXAMINATION AND DISCUSSION

The written exam is the last phase of the semester examina-
tion. Students have already collected the points from final test
and final practice (in the range [10, 60]). When the points are
≥ 50, the student may refuse the written exam and interview.
When the points are 10, the student must earn all 40 points
from the written exam and interview to reach a positive grade.

Students draw their exam questions in a classical method.
A list of questions may be given in advance or a question
may be a topic from a lecture. Another possible option is the
first question to be the type: “choose the question you know
best” and the second question to be selected by the instructor.
This approach eliminates the case: “I did not learn only one
question and it fell on me”.

The interview is a discussion upon the paper written by
the student. It emphasizes written statements that are vague,
ambiguous, not entirely true, true with addition or false, trying
to get the student to think and to clarify what he/she meant
when he/she wrote these statements. If there is a gap in the text
the student may be required to add text, or to set an example,
or to write small source code. Typically, the interview begins
with a small arithmetic – how many points the student has
collected till now and what grade can be reached. For example,
if he/she is collected 45 exam points, 5 points from this phase
mean grade 3, 15 points – grade 4 or 35 points for 5. At this
session, the student can not complete for an excellent grade
because of weak performance in the test and the final exam of
practice.

VII. CONCLUSION

The idea for such an evaluation system occurred in 1999
when I started teaching programming at the South West
University, Blagoevgrad. Over the years I changed some details
and now the system is applied in New Bulgarian University,
Sofia for several courses [10].

An important element in the use of tests is the analysis of
the results from a specific test where you can make statistical
processes to assess the test questions and answers, and others.
It is a good prospect for future work.

REFERENCES

[1] Cay Horstmann, Computing Concepts with C++ Essentials, Third
Edition, John Wiley & Sons, 2003.



[2] G. Bizhkov, G. Theory and Methods of teaching tests, “Education”, S.
1992 (in Bulgarian).

[3] Handbook of assessment, Assessment Centre, NBU, 2007 (in Bulgar-
ian).

[4] H. M. Deitel, P. J. Deitel, C++ How to Program, Fourth edition, Prentice
Hall, 2002.

[5] LATEX – A document preparation system.
http://www.latex-project.org/

[6] M. Goodrich, R. Tamassia, D. M. Mount, Data Structures and Algo-
rithms in C++, Wiley, 2004.

[7] N. Kirov, A collection of teaching materials: Introduction to program-
ming Demetra, Sofia, 2003 (in Bulgarian).

[8] N. Kirov, A collection of teaching materials: Programming and Data
Structures, Demetra, Sofia, 2004 (in Bulgarian).

[9] N. Kirov, Teaching programming in high schools, Mathematics and
Mathematics Education, 2001 (in Bulgarian).

[10] Nikolay Kirov home page – teaching.
http://nikolay.kirov.be/teach_en.html

[11] Sillabus – Data Structure and Algorithm, Department of Computer
Science, California State University San Marcos.
http://courses.csusm.edu/cs311ah/Pages/Syllabus.htm

[12] T. Angelo, Reassessing (and defining) assessment. AAHE Bulletin,
48(3), (1996), 7-9.


