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this connection we give here an algorithm for �nding a best approximation in POLYn foran arbitrary A 2 CONV.Our procedure contains several steps. Given the set A 2 CONV, we �rst associatewith each number " > 0 some order preserving homeomorphism T" of S onto itself. Thisis done in such a way that the rotational number r(") of T" is a nondecreasing function of" > 0 and, moreover, the number "�n := minf" > 0 : r(") = 1=ng is equal to the distancebetween A and its best approximations in POLYn.In the second step we take an arbitrary unit vector e 2 S and generate the iterationsT"(e); T 2" (e); : : : ; T k" (e); : : : for " = "�n:It turns out that this sequence approximates very well some n-periodical sequence fekgk�1 �S such that all ek; k = 1; 2; : : : ; n are \outward" unit normals to the sides of some polygon� which is a best approximation for A in POLYn. This su�ces to construct (in the thirdstep) the best approximating polygon � 2 POLYn.In one of its equivalent formulations the above problem can be considered as a speci�cspline approximation problem. From this point of view our algorithm provides a solutionto a speci�c variable knots spline approximation problem. It also gives a solution to aparticular global optimization problem where the function to be minimized has more thanone local minimum.Some other aspects of the polygonal approximations of plane convex sets are containedin the papers of Popov [P], Toth [T], McLure and Vitale [McV], Georgiev [Ge], Gruberand Kenderov [GK], Nedelcheva [Ne] etc.2 Necessary results from convexity and the theory ofdynamical systemsWe denote the scalar product of two vectors (points) P1; P2 in the plane R2 by hP1; P2i.Thus the Euclidean norm of some P 2 R2 is jP j = qhP;P i. For a given A 2 CONV wedenote by sA the support function of A de�ned inR2 by the formula sA(P ) = maxfhP;Xi :X 2 Ag. This function is convex, positively homogeneous and continuous. It is completelydetermined by its values on the unit circumference S := fP 2 R2 : jP j = 1g. For everyA;A1; A2 2 CONV and t > 0 we have sA1+A2 = sA1 + sA2 and stA = tsA. MoreoverA1 � A2 i� sA1(e) � sA2(e) for every e 2 S. These facts, together with the observationthat the support function of B = fP 2 R2 : jP j � 1g on S is the constant 1, show thatthe Hausdor� distance between two sets A1; A2 2 CONV can be represented as followsh(A1; A2) = infft > 0 : sA1(e) � sA2(e)+ t; sA2(e) � sA1(e)+ t for every e 2 Sg = infft >0 : jsA1(e)� sA2(e)j � t for every e 2 Sg = maxfjsA1(e) � sA2(e)j : e 2 Sg. This meansthat the mapping assigning to each A 2 CONV the function sA from the space C(S) ofall continuous functions in S is an isometry when CONV is given the Hausdor� metricand C(S) is equipped with the usual \sup" norm. Having this in mind we see that theproblem of approximating an A 2 CONV (with respect to the Hausdor� distance) byelements of POLYn; n � 3, is equivalent to the approximation (in the sup-norm in C(S))of sA by support functions of n-gons. 2



Fig. 2.1Let � 2 POLYn be an n-gon with di�erent vertices P1; P2; : : : ; Pn (taken in coun-terclockwise direction). The so called \side directions" of � are the unit vectors ei; i =1; 2; : : : ; n, such that ei is perpendicular to the side PiPi+1 of � (Pn+1 � P1) and isdirected \outward �". Of course, s�(e) = maxfhPi; ei : i = 1; 2; : : : ; ng and s�(ei) =hPi; eii = hPi+1; eii; i = 1; 2; : : : ; n. On the arc [ei; ei+1] � S (taken again in counterclock-wise direction) s�(e) = hPi+1; ei. In this sense s�(e) is a \spline" of functions of the typehP; ei (P is �xed and e is the variable) with knots at the side directions ei; i = 1; 2; : : : ; n.If S is identi�ed with the segment [0; 2�], then s�(') is a spline of functions of the typea cos('� �) where a and � are �xed.For a given M 2 R2 and A 2 CONV we denote by d(M;A) the distance from Mto A, i.e. d(M;A) = minfjM � Xj : X 2 Ag. If M 62 A then d(M;A) > 0 and thereexists uniquely determined \nearest point" N = N(M) for M in the set A : N 2 A andjM �N j = d(M;A).De�nition 2.1 The n-gon � = (P1; P2; : : : ; Pn) is said to be alternating for the set A 2CONV if for each i = 1; 2; : : : ; n(a) d(Pi; A) = h(A;�),(b) sA(ei)� s�(ei) = h(A;�).If Ni = N(Pi) is the nearest point in A for Pi; i = 1; 2; : : : ; n, and e�i := (Pi �Ni)=d(Pi; A), then the unit vectors e�1; e1; e�2; e2; : : : ; e�n; en appear one by one in the coun-terclockwise direction on S and for each i = 1; 2; : : : ; n, h(A;�) = sA(ei) � s�(ei) =sA(e�i ) � s�(e�i ). This explains the notion \n-gon alternating for A". The 3-gon � =(P1; P2; P3) in Fig. 2.1 is alternating for the set A.The following theorem (see Theorem 3.1 in [Ke] ) shows the role played by the alter-nating n-gons in the polygonal approximation of a given A 2 CONV.3



Fig. 2.2. Graph of functions tn(e). Corresponding sets A arealso depicted; the unit vectors e 2 S are identi�ed in a naturalway with the real numbers from [0; 2�].4



Theorem 2.2 If � is a best Hausdor� approximation in POLYn for some A 2 CONV,then � is alternating for A.Thus, alternating property is a necessary condition for � to be a best approximation forA in POLYn. However, unlike the �Cebishev approximation by polynomials, this conditionis very far from being a su�cient one. The next assertion shows that there are many n-gons alternating for a given A and, in general, their distance from A is not one and thesame.Theorem 2.3 (see 4.10 from [Ke] ). Let A 2 CONVnPOLYn and e 2S. Then thereexists a unique n-gon �n(e) 2 POLYn which is alternating for A and has e among itsside directions.In fact (see 4.12 from [Ke]), �n(e) provides the best Hausdor� approximation for Ain the set of all elements of POLYn having e among their side directions.Since there is an e�cient algorithm (see Section 3 of this paper) for �nding �n(e),Theorems 2.2 and 2.3 reduce our problem of �nding best Hausdor� approximation forA in POLYn to the minimization of the function tn(e) := h(A;�n(e)) over e 2 S. Thisapproach was already used by Yotov and Christov [YC] for the partial case when A is apolygon with more than n vertices. However, to minimize tn(e) over e 2 S is not a trivialtask. There are at least two kinds of di�culties. As seen from Fig. 2.2 a), b) and c)where the graphs of tn(e) for di�erent A's and n's are plotted, the function tn(e) can havemany local minima and this is an obstacle for the numerical optimization.Another obstacle is the fact that, the function tn(e) is not obliged to be everywheredi�erentiable and the standard optimization procedures can not be applied.In this paper we suggest a way to avoid these di�culties. It is based on some simpleconsiderations from the theory of dynamical systems in S.Construction 2.4Let A 2 CONV have interior points. Let " > 0: We de�ne now a mapping (dynamicalsystem) T (�; ") : S �! S in the following way. For e 2 S consider the line (see Fig. 2.3)L = fX 2 R2 : he;Xi = sA(e) � "g and a point P (e) 2 A + "B (the "-neighborhoodof A) for which sA(e) + " = hP (e); ei. The intersection of L and A + "B is a segmentM1M2. Without loss of generality we may consider that the point M1 \comes �rst" whenthe boundary of A+ "B is run over in the counter clockwise direction starting from P (e)(this means that the interior of A+ "B remains always on the left-hand side). Denote bye�1 the unit vector (M1 �N(M1))=" where, as above, N(M1) is the nearest point in A forM1. Further, denote by T (e; ") the only unit vector e0 2 S for which sA(e0)� " = he0;M1iand e0 2 [e�1;�e�1] (the arc [e�1;�e�1] is taken in counter clockwise direction).The correctness of this construction is easily seen from the following fact (see Propo-sition 2.1 of [Ke]):For every M1 with d(M1; A) = " the function sA(e)� he;M1i strictly increases (whene runs over the arc [e�1;�e�1]) from �d(M1; A) = �" (for e = e�1) to d(M1; A) = " forsome e = e0 and takes values greater than " in the open arc (e0;�e�1). Thus the point5



Fig. 2.3.M1 = M1("; e) and the unit vectors e�1 = e�1(e; ") and T (e; ") are completely determinedby the following conditions:(a) sA(e)� he;M1i = sA(T (e; "))� hT (e; ");M1i = d(M1; A);(b) e�1 2 [e;�e];(c) T (e; ") 2 [e�1;�e�1].The length of the arc [e; T (e; ")] (again in counterclockwise direction) is strictly be-tween 0 and 2�.In the special case when A is a circle of radius r, T (�; ") : S �! S is just the rotationin the counterclockwise direction by the angle 2 arccos((r � ")=(r + ")).Denote by R+ the set of all positive real numbers. The important for us properties ofthe mapping T (�; �) : S � R+ �! S assigning to each pair (e; ") 2 S � R+ the elementT (e; ") 2 S are gathered in the following assertion.Proposition 2.5 (i) T is continuous at every point (e0; "0) 2 S �R+.(ii) If "1 > "2, then for every e 2 S T (e; "2) belongs to the open arc (e; T (e; "1)) (againtaken in counterclockwise direction).(iii) For a �xed " the mapping T (�; ") : S �! S is one-to-one, onto S, and\preserves the order", i.e., if e2 2 (e1; T (e1; ")) then T (e1; ") 2 (e2; T (e2; ")).This is contained in the proof of Proposition 2.7 from [Ke].When " > 0 is �xed, the behavior of the sequence of iterationse; T (e; "); T 2(e; "); : : : ; T n(e; "); : : :where e 2 S, T k+1(e; ") = T (T k(e; "); "), and T 0(e; ") := e, is of special importance forus. For instance, if the sequence is periodical (with minimal period k) and makes onlyone turn around S for k steps, then the sequence fT n(e; ")gn�1 consists of side directions6



of some k-gon � which is alternating for the set A and h(A;�) = ". It is easy to �nd thevertices of � in this case. For every pair of successive side directions e0 = T i(e; ") ande00 = T i+1(e; ") the intersection point of the lines L0 = fP 2 R2 : he0; P i = sA(e0)� "g andL00 = fP 2 R2 : he00; P i = sA(e00)� "g is a vertex of �.One could not expect that for every e 2 S the sequence fT n(e; ")gn�0 will be k-periodical. However the following statement is true.Corollary 2.6 If there exists an alternating k-gon �0 for the set A 2 CONV withh(A;�0) > 0, then for every e 2 S the sequence fT n(e; ")gn�0, where " = h(A;�0), will be\asymptotically" k-periodical. This means that fT kn(e; ")gn�0 is a convergent subsequenceand for �e = limn!1 T kn(e; ") the sequence fT n(�e; ")gn�0 is k-periodical and consists ofside directions of some k-gon �� which is alternating for A with " = h(A; ��). In general�� is not obliged to coincide with �0.All this follows from Construction 2.4 and the next well known theorem about dy-namical systems in S (see, for instance, [Ni] ).Theorem 2.7 Let T : S �! S be an order preserving homeomorphism of S onto itself.Let there exist some e0 2 S for which the sequence fT ne0gn�0 is periodical with minimalperiod k. Then for every e 2 S the sequence fT negn�0 is asymptotically k-periodical,i.e. fT nkegn�0 converges to some e� 2 S. In particular, T ke� = e� and the sequencefT ne�gn�0 is k-periodical.It should be noted also that for our approximation problem only those k-periodicalsequences fT n(e; ")gn�0 are of interest for which just one turn around S is done for kiterations. If more turns around S are made for k iterations, then the correspondingk-gon is not convex.We will need one more thing from the dynamical system theory. Denote by �(e) thelength of the arc [e; T (e; ")] and put for k = 1; 2; : : :fk(e; ") := �(e) + �(T (e; ")) + : : :+ �(T k�1(e; ")):It is known (see [Ni] ) that the sequence ffk(e; ")=kgk�1 is convergent for every e 2 S andits limit does not depend on e 2 S.De�nition 2.8 The number r(") = 12� limk!1 fk(e; ")kis called a rotation number of T (�; ").It is known (see [Ni]) that r(") = p=q, for some positive integers p and q withoutcommon divisors, if and only if for at least one e 2 S the sequence fT n(e; ")gn�0 is q-periodical and f q(e; ") = 2p� (i.e. for q iterations of e by T the length of S is run over ptimes in counterclockwise direction). 7



Corollary 2.9 Let " = h(A;�), where the convex polygon � is alternating for A. Thenr(") = 1=k if and only if � is a (non-degenerate) k-gon.Proof. Starting from a side direction of � one gets the periodical sequence fT n(e; ")gn�0consisting of all side directions of �. Moreover, one turn around S is done for k iterations,where k is the number of di�erent side directions of �. This is the case if and only ifr(") = 1=k.2Proposition 2.10 The function r(") is nondecreasing and continuous.Proof. The continuity of r(") follows from more general considerations but we givehere a self contained proof. The monotonicity of fk(e; ") (as a function of " > 0) followsfrom ii) and iii) of Proposition 2.5. This implies that r(") is a nondecreasing function of". Such a function is discontinuous at some "0 if and only iflim"!"0 ;"<"0 r(") < lim"!"0;">"0 r(")(i.e. r(") has a jump at "0). Therefore, the rest of the proof is contained in the nextassertion.2Lemma 2.11 Let r(0) := lim"!0 r(") and r(1) := lim"!1 r("). For every rationalnumber p=q with r(0) < p=q < r(1) there exists an " > 0 such that r(") = p=q.Proof. There exist "2 > "1 > 0 such that r("1) < p=q < r("2). If s = nq, then1s f s(e; "1) = 1nq fnq(e; "1) = 1n n�1Xi=0 1q f q(T iq(e; "1); "1):When s = nq is large enough, 12� 1nq fnq(e; "1) < pq . On the other hand, since 12� 1nq fnq(e; "1)is a mean value of the numbers 12� 1q f q(T iq(e; "1); "1); i = 0; 1; : : : ; n � 1, at least one ofthem is smaller then p=q. This means that e1 2 S exists for which 12� 1q f q(e1; "1) < pq .Reasoning in an analogous way we deduce that there exists some e2 2 S for which12� 1q f q(e2; "2) > pq . Hence f q(e1; "1) < 2p� < f q(e2; "2). Since f q(�; �) is a continu-ous function and its domain S �R+ is a connected set, there exist �e 2 S and �" > 0 suchthat f q(�e; �") = 2p�. Evidently f q(T iq(�e; �"); �") = 2p�. Thereforer(�") = 12� limn!1 1nqfnq(�e; �") = 12� limn!1 1nq n�1Xi=0 f q(T iq(�e; �"); �") = pq :2Corollary 2.12 For every integer k > 1 the set f" > 0 : r(") = 1=kg is a (possiblydegenerate) segment which is a closed subset of R+.In Fig. 2.4 the graphs of r(") are plotted for di�erent sets A.8



Fig. 2.4.3 Algorithms and numerical resultsLater in this section we will present an algorithm for the numerical computation of T (e; ").Now we will show how the possibility to calculate T (e; ") can be used in order to solveour problem of polygonal approximation of some A 2 CONV. When " > 0 and e 2 Sare given, there is an attractive way to �nd a polygon � which is alternating for A andh(A;�) = ". One has to look at the behavior of the sequence fT n(e; ")gn�0. If it isrecognized as \asymptotically k-periodical", then a k-gon � with the desired propertiescan be constructed because we will know its side directions. Unfortunately, Corollary 2.6and Theorem 2.7 do not give any estimates for the rate of convergence of the sequencefT nk(e; ")gn�0 and it is not easy to forecast the number of iterations needed to reveal theperiodicity of the sequence fT n(e; ")gn�0. Numerical experiments show, however, that20-30 iterations of T su�ce to establish the asymptotic k-periodicity of that sequence (atleast for k = 3; k = 4). In particular, if the number "�k = minfh(A;�) : � 2 POLYkgis taken as ", then after relatively few iterations the sequence fT n(e; ")gn�0 will providethe side direction of a k-gon �0 which will be a best Hausdor� approximation for Ain POLYk. This remark reduces our approximation problem to the �nding of "�k. ByTheorem 2.2 "�k = minfh(A;�) : � 2 POLYk and � is alternating for Ag. Having inmind Corollary 2.9 we see that "�k = minf" > 0 : r(") = 1=kg. The numerical procedurefor the calculation of "�k is now suggested by Proposition 2.10.9



3.1 An algorithm for the calculation of "�kIf there were an e�cient algorithm for the calculation of r("), for every " 2 R+, thensolving an equation of the type r(") = t, where t 2 R, would not be a di�cult problem atall. For instance, one could use the bisection method in order to localize "�k. Unfortunatelythe de�nition of r(") as limn!1 fn(e;")2�n does not provide a good tool for the numericalcalculation of r("). Nevertheless we can use the speci�c features of our situation in orderto �nd good approximation for "�k. In fact, it is enough to be able to estimate (for every" > 0) the sign of the di�erence r(") � 1=k in order to �nd better approximation for"�k. Starting from some "0 > 0 we can take as a next approximation some "1 > "0 (ifr("0) � 1=k < 0) or some "1 < "0 (if r("0) � 1=k > 0). Technically this can be donein di�erent ways. Here is one of the possibilities. Starting from some e 2 S produce aprescribed (but big enough) number s of members of the sequencee; T (e; "0); T 2(e; "0); : : : ; T s(e; "0); : : : ; T s+k(e; "0); : : :and calculate the number � = Pki=1 �(T s+i(e; "0)). If � > 2�, according to Proposition2.5 there exists " < "0 for which kXi=1 �(T i(e1; ")) = 2�;where e1 = T s(e; "0). This means that r(") = 1=k and thus "�k � " < "0. Therefore some"1 < "0 can be taken as a next approximation of "�k. If � < 2�, we can take some "1 > "0and repeat the procedure with "1 at the place of "0. If � = 2�, we have "�k � "0 and again"1 < "0 should be taken as next approximation of "�k.3.2 An algorithm for the calculation of T (e; ")Now we describe an algorithm for the calculation of T (e; "). As mentioned in the in-troduction, the set A is completely determined by its support function sA : S �! R.We will assume, however, that something more is known about the set A. Namely, wewill consider that for every e 2 S at least one point P (e) = (x(e); y(e)) from the setfP 2 A : he; P i = sA(e)g is known. P (e) is a point where the function he; �i attains itsmaximum on A. To �nd T (e; ") one proceeds as follows:(1) Find an e� 2 [e;�e] such that he; P (�e) + "�ei < sA(e) � ", for every �e 2 [e; e�]and he; P (�e) + "�ei > sA(e) � ", for every �e 2 (e�;�e]. In other words, e� splits the arc[e;�e] into two disjoint sets of points. The points P (�e) + "�e are on one side of the lineL = fP 2 R2 : he; P i = sA(e) � "g for �e 2 [e; e�) and on the other side of this linefor �e 2 (e�;�e]. The unit vector e� can be found with satisfying accuracy by bisectionmethod. There occur only two possibilities.(a) There exist (see Fig. 3.1 a)) only one point P 2 A for which he�; P i = sA(e�). Inthis case P = P (e�) and we put M := P (e�) + "e� and proceed to step 2.10



Fig. 3.1.(b) There are (see Fig. 3.1 b)) at least two points P (and thus a line segment of pointsP on the boundary) of A for which he�; P i = sA(e�). P (e�) is among these points. Inthis case we take a unit vector e00 with he00; e�i = 0 and �nd t 2 R in such a way thathe; P (e�) + "e� + te00i = sA(e) � ". Then we put M := P (e�) + "e� + te00 and proceed tostep 2.(2) Find e0 2 [e�;�e�] such that he0;Mi = sA(e0) � ". This is possible because (ac-cording to Proposition 2.1 of [Ke] ) the function h�e;Mi � sA(�e) is strictly increasing from�" (for �e = e�) to " (for �e = e0 ) and takes values greater than " in the open arc (e0;�e�).Again a bisectional procedure could be applied.Finally we put T (e; ") := e0. 11



3.3 An algorithm for the construction of�n(e) (see Theorem 2.3)According to Proposition 2.5 the functionfn(e; ") = �(e) + �(T (e; ")) + : : :+ �(T n�1(e; "))is an increasing and continuous function of ". For "0 = 0:5 W (e), where W (e) =sA(e) � sA(�e) = maxfhe;Xi : X 2 Ag � minfhe;Xi : X 2 Ag is the width of A indirection e; T (e; "0) = �e and T (�e; "0) = e. Therefore fn(e; "0) = n�. Consequently, iffn(e; 0) := lim"!0 fn(e; ") < 2� (this is the case when A 62 POLYn), then there is some" for which fn(e; ") = 2�. This " can be calculated by the bisection method. Evidently,e; T (e; "); : : : ; T n�1(e; ") are the side directions of �n(e) and the latter can be constructede�ectively.On the basis of these algorithms a computer program for IBM PC/AT was developedwhich �nds numerically the best approximation by n-gons of a given A 2 CONV.On Fig. 3.2 some convex sets are shown together with their best approximating n-gons.

Fig. 3.2.12



Fig. 3.3.3.4 RemarksLet A 2 CONV. If follows from Proposition 2.10 that there must exist real numbers" > 0 for which the corresponding rotation number r(") is an irrational number. For suchan " > 0 the sequence fT i(e; ")gi�0 does not \converge asymptotically" to a periodicalsequence. Moreover (see [BK] ), in this case, the sequence fT i(e; ")gi�0 is dense in S (forevery e 2 S). Further, if 
 is an irrational number, then the set f" > 0 : r(") = 
gcannot have more than one point. This result from [BK] combined with Proposition13



2.10 implies that the set f" > 0 : r(") is rationalg is dense in R+. An expression ofthese facts for the case when A is a square can be seen on Fig. 3.3 a). It representsa copy of the computer monitor. The vertical coordinate line consists of the segment[0; 2�] which is identi�ed with S (in particular, T i(e; ") 2 [0; 2�] for i = 1; 2; 3; : : :). Thehorizontal coordinate line consists of positive numbers. For �xed " > 0 and e 2 S �[0; 2�] the points f("; T i(e; "))g1000i=100 are displayed on the computer monitor as points onthe vertical line passing trough ". If for the �rst 100 \hidden" iterations the sequencefT i(e; ")gi�0 \stabilizes" and \becomes k-periodical", then the next 900 iterations willproduce cyclically (on the computer monitor) only k points above the given " > 0. Forsuch " the rotation number r(") is rational. If r(") is irrational for some " > 0; then thepoints f("; T i(e; "))g1000i=100 appear above " without any periodicity.Fig. 3.3 a) has a certain degree of selfsimilarity. When enlarged to the full size of themonitor the small rectangle depicted on 3.3 a) transforms to what is shown on 3.3 b). Inturn, 3.3 c) is an enlargement of the small rectangle from 3.3 b).Another result related to our work is given in [Ne]. If two convex sets A1 and A2 giverise (via Construction 2.4 ) to one and the same mapping T (�; �) : S�R+ �! S, then A1and A2 coincide up to a translation. This is proved in [Ne] for the cases when A1 and A2are either convex polygons or smooth convex sets. One could conjecture that the resultis valid for arbitrary convex sets.Also, it is not known to what extent the two sets A1 and A2 coincide if r1(") = r2(")for every " > 0; where ri(") is the rotation number function of Ai; i = 1; 2:AcknowledgmentThe authors are indebted to L. Stoyanov for the useful discussions.References[BK] E.Belogai and P. S.Kenderov, Dynamical systems associated with a convexset in the plane, preprint.[Ge] P.G.Georgiev, Approximation of convex n-gons by (n � 1)-gons, Proceedingof the Thirteenth Spring Conference of the Union of Bulgarian Mathematicians(1984), 289-303 [Bulgarian].[GK] P.Gruber and P.Kenderov, Approximation of convex bodies by polytops,Rend. Circ. Mat. Palermo (2) 31 (1982), 195-225.[Ke] P. S. Kenderov, Polygonal approximation of plane convex compacts, J. Approx.Theory 38 (1983), 221-239.[McV] E.D.McClure and R.A.Vitale, Polygonal approximation of plane convexbodies, J. Math. Anal. Appl. 51 (1975), 326-358.[Ne] M.Nedelcheva, Characterization of convex subsets of the plane through theirlocal approximation properties, SERDICA Bulgarical Mathematical Publications11 (1985), 165-170. 14
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