B - Paperboy
Since the paperboy can carry as many papers as he wants, we can rule out any kind of path that zig-zags between the houses in relation to the starting position. To see this, observe that if we start between two houses and go to the left (where we assume the houses to be on a left-right line), we need to visit the houses further to the left eventually, and so there's no reason to not do it immediately instead of going back to the house to the right. 
Also, note that as the delivery time is 1 is constant for all houses, we can instead assign an instantaneous delivery time and just add n to our answer at the end. So we have two scenarios:
1. From the starting position, go to the leftmost house, then go to the rightmost house.
2. From the starting position, go to the rightmost house, then go to the leftmost house.
Note that we could potentially start off left of the leftmost house, or right of the rightmost house, so the absolute difference should be taken. 
C - Repechage
The winner of the tournament must have won N times; the second place finisher must have won N-1 times. If we keep track of who beats whom, using a map of a name of a person to names of the contestants beaten by that person, then we can combine the two sets of beaten contestants, one for each finalist, and sort that alphabetically to get the repechage. 
D - Missing Number
Firstly, the infinite sum of all natural numbers is -1/12 (really!)…but we'll stick with the more well-known formula of n(n+1)/2 for this problem. Basically, we set up the equation S ≤ n(n+1)/2 and find the smallest integer n that satisfies this. If this turns out to be an equality, i.e. S = n(n+1)/2, then no number was missing. Otherwise, we output n(n+1)/2-S. 

This leaves the task of solving for n; we can either use the quadratic formula, or approximate n(n+1) as n2 and take the square root of both sides. Both methods work. 
E - Fixing the Bridges of Königsberg
The question basically asks for the minimum number of edges to add to an undirected graph such that an Eulerian cycle exists. I won't go into a detailed proof, but whether a graph having an Eulerian cycle is equivalent to whether all its vertices have even degree (i.e. an even number of edges adjacent to every vertex). For some more rigour, read the Wikipedia page. 

So you might think “well that's easy, all we need to do is count the number of odd-degree vertices (of which we are guaranteed there will be an even number1), divide by 2, and output the result as the answer”. And so you would code this super simple answer up and submit and get a wrong answer. 

Well that's not good. Why would this happen? Consider this graph: 

[image: http://i.imgur.com/RFpdpv8.png] 

The easy solution would add an edge between 3 and 4, making all vertices even degree, but there is no Eulerian cycle here, because the graph is disconnected. So our solution needs to account for disconnected graphs. 

Thus, before counting up all the odd-degree vertices and dividing by 2, we have to ensure the graph is fully connected…but there is a slight caveat here. Recall that a graph is connected if a path exists between every pair of vertices. But we aren't looking to satisfy this; we want to create an Eulerian cycle, which only requires traversing every edge. Ergo, if there are any degrees with degree 0, we can ignore them completely. 

Our procedure, then, will look something like the following:
1. Separate the (non-zero-degree) vertices into separate components.
2. If there is one component, we're done, and can do what we did before (i.e. count odd-degree vertices and divide by 2). Otherwise…
3. If there are two odd-degree vertices in different components, connect them with an edge, and go to 2.
4. At this point, if there are any odd-degree vertices, they are all in the same component. So pick a random vertex in a different component, connect it to an odd-degree vertex, and go to 2.
5. At this point, there are no odd-degree vertices. So pick two random vertices in different components, connect them, and go to 2.
The general idea is to connect all the components together while trying to reduce the number of odd-degree vertices, since those add to the total of required edges. 

Once this is done, we can, as before, count the number of odd-degree vertices, divide by 2, and add this to the answer. 
F
Let us first notice that it doesn’t make sense to sort the books in groups that contain less than 3 books because the discount is only valid for a group consisting of 3 books (to refresh our memory, the discount said that we’d get the cheapest of 3 books for free). This means that we need to sort all the books into groups of 3, so that there’s only one group that has less than 3 books in the end (because the number of books that the customer decided to purchase is not a multiple of the number 3).

Let us now find the two most expensive books from the set of all books (their prices can be equal to each other). Because there is no other book more expensive than them, we can’t create a group where we’d get a discount for those two books (because they are the most expensive ones), but we can then take the third most expensive book and put it in the group with the two most expensive ones. This way we’ll get the discount for the third most expensive book. Now we have decreased the initial set of books by three.

By repeating this procedure while we still have books in the set and by ensuring that we get the discount for the most expensive book (the third most expensive book out of all the remaining ones) in every grouping, we make sure that the final price is going to be the minimal possible. If the number of books is not a multiple of the number 3, that means that we’ll have 1 or 2 books in the last grouping and we’ll have to pay for both, but that doesn’t undermine the described algorithm

Necessary skills: analysis
Category: ad-hoc

[bookmark: _GoBack]G. Geppetto

In this task, we need to count how many combinations, out of the 2 N possible, meet
the requirements for combining the ingredients.

To begin with, for each ingredient i , we can create an array of ingredients j that
cannot be combined with that ingredient.
After this, we solve the task by recursively looping through the ingredients and
trying to do the following:
a. Choose the ingredient - only if we haven’t already chosen an ingredient that
cannot be combined with the current one.
b. Do not choose the ingredient.

For implementation details, consult the official solution.

Necessary skills: arrays
Category: ad-hoc, recursion
image1.png

