

Департамент Информатика
Школа „Състезателно програмиране”

СЪСТЕЗАНИЕ, 5 октомври 2013 г.

А. Crashing Robots

In a modernized warehouse, robots are used to fetch the goods. Careful planning is needed to

ensure that the robots reach their destinations without crashing into each other. Of course, all

warehouses are rectangular, and all robots occupy a circular floor space with a diameter of 1

meter. Assume there are N robots, numbered from 1 through N. You will get to know the

position and orientation of each robot, and all the instructions, which are carefully (and

mindlessly) followed by the robots. Instructions are processed in the order they come. No two

robots move simultaneously; a robot always completes its move before the next one starts

moving.

A robot crashes with a wall if it attempts to move outside the area of the warehouse, and two

robots crash with each other if they ever try to occupy the same spot.

The first line of input is K, the number of test cases. Each test case starts with one line

consisting of two integers, 1 ≤ A, B ≤ 100, giving the size of the warehouse in meters. A is the

length in the EW-direction, and B in the NS-direction.The second line contains two integers, 1 ≤

N, M ≤ 100, denoting the numbers of robots and instructions respectively. Then follow N

lines with two integers, 1 ≤ Xi ≤ A, 1 ≤ Yi ≤ B and one letter (N, S, E or W), giving the

starting position and direction of each robot, in order from 1 through N. No two robots start at

the same position.

Figure 1: The starting positions of the robots in the sample warehouse

Finally there are M lines, giving the instructions in sequential order.

An instruction has the following format:

< robot #> < action> < repeat>

Where <action> is one of

 L: turn left 90 degrees,

 R: turn right 90 degrees, or

 F: move forward one meter,

and 1 ≤ < repeat> ≤ 100 is the number of times the robot should perform this single move.

Output one line for each test case:

 Robot i crashes into the wall, if robot i crashes into a wall. (A robot crashes into a wall

if Xi = 0, Xi = A + 1, Yi = 0 or Yi = B + 1.)

 Robot i crashes into robot j, if robots i and j crash, and i is the moving robot.

 OK, if no crashing occurs.

Only the first crash is to be reported.

Sample Input

4

5 4

2 2

1 1 E

5 4 W

1 F 7

2 F 7

5 4

2 4

1 1 E

5 4 W

1 F 3

2 F 1

1 L 1

1 F 3

5 4

2 2

1 1 E

5 4 W

1 L 96

1 F 2

5 4

2 3

1 1 E

5 4 W

1 F 4

1 L 1

1 F 20

Sample Output

Robot 1 crashes into the wall

Robot 1 crashes into robot 2

OK

Robot 1 crashes into robot 2

Департамент Информатика
Школа „Състезателно програмиране”

СЪСТЕЗАНИЕ, 5 октомври 2013 г.

В. The Embarrassed Cryptographer

The young and very promising cryptographer Odd Even has implemented the security
module of a large system with thousands of users, which is now in use in his company. The
cryptographic keys are created from the product of two primes, and are believed to be
secure because there is no known method for factoring such a product effectively.
What Odd Even did not think of, was that both factors in a key should be large, not just their
product. It is now possible that some of the users of the system have weak keys. In a
desperate attempt not to be fired, Odd Even secretly goes through all the users keys, to
check if they are strong enough. He uses his very poweful Atari, and is especially careful
when checking his boss' key.

Input specifications

The input consists of no more than 20 test cases. Each test case is a line with the integers 4 ≤
K ≤ 10100 and 2 ≤ L ≤ 106. K is the key itself, a product of two primes. L is the wanted
minimum size of the factors in the key. The input set is terminated by a case where K = 0 and
L = 0.

Output specifications

For each number K, if one of its factors are strictly less than the required L, your program
should output "BAD p", where p is the smallest factor in K. Otherwise, it should output
"GOOD". Cases should be separated by a line-break.

Sample input Output for sample input

143 10

143 20

667 20

667 30

2573 30

2573 40

0 0

GOOD

BAD 11

GOOD

BAD 23

GOOD

BAD 31

Департамент Информатика
Школа „Състезателно програмиране”

СЪСТЕЗАНИЕ, 5 октомври 2013 г.

C. Electrical Outlets

Roy has just moved into a new apartment. Well, actually the apartment itself is not very new, even

dating back to the days before people had electricity in their houses. Because of this, Roy's

apartment has only one single wall outlet, so Roy can only power one of his electrical appliances at a

time.

Roy likes to watch TV as he works on his computer, and to listen to his HiFi system (on high volume)

while he vacuums, so using just the single outlet is not an option. Actually, he wants to have all his

appliances connected to a powered outlet, all the time. The answer, of course, is power strips, and

Roy has some old ones that he used in his old apartment. However, that apartment had many more

wall outlets, so he is not sure whether his power strips will provide him with enough outlets now.

 Your task is to help Roy compute how many appliances he can provide with electricity, given a set of

power strips. Note that without any power strips, Roy can power one single appliance through the

wall outlet. Also, remember that a power strip has to be powered itself to be of any use.

Input will start with a single integer 1 ≤ N ≤ 20, indicating the number of test cases to follow. Then

follow N lines, each describing a test case. Each test case starts with an integer 1 ≤ K ≤ 10, indicating

the number of power strips in the test case. Then follow, on the same line, K integers separated by

single spaces, O1 O2 . . . OK, where 2 ≤ Oi ≤ 10, indicating the number of outlets in each power strip.

Output one line per test case, with the maximum number of appliances that can be powered.

Sample input Sample output

3

3 2 3 4

10 4 4 4 4 4 4 4 4 4 4

4 10 10 10 10

7

31

37

Департамент Информатика

Школа „Състезателно програмиране”
СЪСТЕЗАНИЕ, 5 октомври 2013 г.

D. Playground

George has K ≤ 20 steel wires shaped in the form of half-circles, with radii a1, a2, . . . , aK.

They can be soldered (connected) at the ends, in any angle. Is it possible for George to make a

closed shape out of these wires? He does not have to use all the wires. The wires can be

combined at any angle, but may not intersect. Beware of floating point errors.

Input specifications

Each data set consists of a number 0 < K ≤ 20 on a line by itself, followed by a line of K

space-separated numbers ai. Each number is in the range 0 < ai < 10
7
, and has at most 3

digits after the decimal point. The input will be terminated by a zero on a line by itself.

Output specifications

For each test case, there should be one word on a line by itself; “YES” if it is possible to make

a simple connected figure out of the given arcs, and “NO” if it isn’t.

Sample input Sample output
1

4.000

2

1.000 1.000

3

1.455 2.958 4.424

7

1.230 2.577 3.411 2.968 5.301 4.398 6.777

0

NO

YES

NO

YES

Департамент Информатика
Школа „Състезателно програмиране”

СЪСТЕЗАНИЕ, 5 октомври 2013 г.

E. Conformity

Frosh commencing their studies at Waterloo have diverse interests, as evidenced by their
desire to take various combinations of courses from among
those available.

University administrators are uncomfortable with this situation, and therefore wish to offer
a conformity prize to frosh who choose one of the most popular combinations of courses.
How many frosh will win the prize?

The input consists of several test cases followed by a line containing 0. Each test case begins
with an integer 1 ≤ n ≤ 10000, the number of frosh. For each frosh, a line follows containing
the course numbers of five distinct courses selected by the frosh. Each course number is an
integer between 100 and 499.

The popularity of a combination is the number of frosh selecting exactly the same
combination of courses. A combination of courses is considered most popular if no other
combination has higher popularity. For each line of input, you should output a single line
giving the total number of students taking some combination of courses that is most
popular.

Sample Input

3

100 101 102 103 488

100 200 300 101 102

103 102 101 488 100

3

200 202 204 206 208

123 234 345 456 321

100 200 300 400 444

0

Output for Sample Input

2

3

Департамент Информатика
Школа „Състезателно програмиране”

СЪСТЕЗАНИЕ, 5 октомври 2013 г.

F. Context-Free Clock

You recently installed a stylish clock in your office that is perfectly round and has no
markings that identify its orientation. After accidentally bumping it, you realized that 12
o’clock might no longer be at the top. Nonetheless, you want to figure out what time it is.
Fortunately you recently overheard a coworker giving the time and you have a protractor
and can measure the angle between the hour and minute hands.

Your program should print the first time that has the correct angle between the hour and
minute hands and that is on or after the overheard time. The angle (0 to 359 degrees,
inclusive) will be measured clockwise from the hour hand to the minute hand. Assume that
the clock hands move smoothly.

Input will consist of one test case per line, of the form A HH:MM:SS where A is the integral
number of degrees that must be traversed clockwise to get from the hour hand to the
minute hand and HH : MM : SS is the overheard time in 24 hour form. 0 ≤ A ≤ 359, 0 ≤ HH ≤
23, 0 ≤ MM ≤ 59, and 0 SS 59. HH, MM, and SS will be exactly two digits with a leading zero if
necessary. End of input will be signaled by the line -1 00:00:00

Output will consist of one line per test case, of the form HH:MM:SS where HH : MM : SS is
the first time on or after the input time where the angle from the hour hand to the minute
hand is exactly A degrees, rounded down to the nearest second. HH, MM, and SS should be
zero padded to two digits and in the same range as the input (0 . . . 23, 0 . . . 59, and 0 . . . 59
respectively).

Input Output
270 14:45:00

0 12:00:00

0 12:00:01

300 13:30:00

180 08:30:00

-1 00:00:00

15:00:00

12:00:00

13:05:27

14:00:00

09:16:21

Департамент Информатика
Школа „Състезателно програмиране”

СЪСТЕЗАНИЕ, 5 октомври 2013 г.

G. Necklace Decomposition

The set of cyclic rotations of a string are the strings obtained by embedding the string clockwise on a
ring, with the first character following on the last, starting at any character position and moving
clockwise on the ring until the character preceding the starting character is reached. A string is a
necklace if it is the lexicographically smallest among all its cyclic rotations. For instance, for the string
01011 the cyclic rotations are (10110,01101,11010,10101,01011), and furthermore 01011 is the
smallest string and hence, a necklace.

Any string S can be written in a unique way as a concatenation S = T1 T2 . . . Tk of necklaces Ti such

that Ti+1 < Ti for all i = 1, . . . , k − 1, and Ti Ti+1 is not a necklace for any i = 1, . . . , k − 1. This

representation is called the necklace decomposition of the string S, and your task is to find it.

The relation < on two strings is the lexicographical order and has the usual interpretation: A < B if A is

a proper prefix of B or if A is equal to B in the first j − 1 positions but smaller in the jth position for

some j. For instance, 001 < 0010 and 1101011 < 1101100.

Input

On the first line of the input is a single positive integer n, telling the number of test scenarios to
follow. Each scenario consists of one line containing a non-empty string of zeros and ones of length
at most 100.

Output

For each scenario, output one line containing the necklace decomposition of the string. The
necklaces should be written as ’(’ necklace ’)’.

Sample Input:

5

0

0101

0001

0010

11101111011

Sample Output:

(0)

(0101)

(0001)

(001)(0)

(111)(01111)(011)

