Convex Hull
(MlsnbkHana obByBKa)

KakBO e n3nbkHamna ooByBKa?

AKO C/ npeacTtaByM 3abUTn BbpPXY MJOCKOCT FBO3AEN M OKOJIO TSX OMNBbHEM
JacTuK, Ton e obpasyBa opMa, obpa3yBaHa OT HaW-BbHLUHUTE FBO3AEN
N CbAbp)Kalla ocTaHanauTe. dopMaTta Ce Hapuya — U3nbKHasia o6BMBKa.

N3nbKHanata o6BMBKA Ha MHOXXECTBO OT TOYKW X B peasiHO BEKTOPHO
NPOCTPaHCTBO V e Han-Maskata 0bBMBKa cbabprkalla X.

EnnH ob6ekT e 06BMBKa ako 3a BCAKA ABOMKA OT TOUYKM B TO3U 0OEKT, BCSAKA
TOYKa OT CBbp3BallaTa MM oTceyka npumHaanexun Ha obekra.

AKO eauH noanroH mMma brba 180 nam noseye rpagyca, To TOM He e
obBuBKa.

i,
-
P
s
.

I
o
o,

e,
T,

OCHOBHW MOHATUSA

AKO aZIEHO MHOXXECTBO CbAbpP)Xa €4Ha ToYKa, TO Ta3un
TOUKa e cobcTtBeHaTa cy 06BUBKaA.

O6BMBKaTa Ha ABE TOYKU € CBbp3BdllldTa ' OTCEYKA.

Ob6BMBKaTa Ha TpU TOYKK, HENEXallM Ha eaHa npaBa €
TPUBIBAHNKBT 06pa3yBaH OT TAX. AKO Te Jie)XaT Ha efHa
npaBa, TO 06BMBKaTa € OoTCeYKaTa CBbp3Balla 2-Te KpanHu
TOUKM.

KpanHa Touyka (extreme) e TakaBa, KOATO JIEXXN BbpPXY
o6BMBKaTa, T.€. T9 € BPbX HA MNOJINrOHa.

N T.H.

C'bLLl,eCTBYBaT pa3/inidHnN aJiroputMnN 3a HAMMNMpaHE Ha
PELUEHNE 3a N3TTbKHAJIA o6BMBKa N Te ca C pPa3/iIndHa
CJ1I0>KHOCT.

Jarvis March

[lo3HAT KaTo TEXHMKA 3a ,0NaKOBAHE Ha MogapbuunTe.

3arno4yBa ce OT ToUYKa OoT o6BMBKATA.

Ob6paTHO Ha YacoBHMKOBATa CTPe/ika, Ce 06X0XXAaT BCUYUKM
TOUKM 33 [a Ce HAaMepu Hal-roeMus brbj OT TeKyLlaTa
KpanHa To4yKa A0 cieABallaTa Touka oT o6BMBKaTA.

TouknTe OoT 06BMBKAaTa CE HaMMpaT B peda Ha TAXHOTO
yyacTue.

[Ipnmep:
http://www.cs.princeton.edu/courses/archive/spr10/cos226
/demo/ah/JarvisMarch.html

http://www.cs.princeton.edu/courses/archive/spr10/cos226/demo/ah/JarvisMarch.html
http://www.cs.princeton.edu/courses/archive/spr10/cos226/demo/ah/JarvisMarch.html
http://www.cs.princeton.edu/~ah/alg_anim/version1/JarvisMarch.html

Peannsauug

3a [a ce HaMepu Han-roiEMNS bbb, TPSAOBA Aa Ce 3HaAAT
nocaeaHnTe ABe Touku pl n p2 oT obBMBKaTa.

[IpyemMame, ye pl n p2 ca No3HaTH, bILABT MEXAY Te3n ABE
TOYKM U BCSIKA OT OCTaHasInTe TOYKM OT obsiactra ce
npecMdaTa. ToykaTa, 3a KOSATO TOM € MaKCMMaJleH, ce B YacT
OT o6BMBKaTa.

3a AJa CTaHe ToBa nMaMe aBe otcedku pOpl v plp2. Tbpcum
brbjla npy pl. 3a UenTa HaMupame npomssegeHneTo (pl —
p0) x (p2 — p0). MakcuManHOTO NMpon3BeaeHne, oTroBaps
3a TbpCEeHaTa TOYKa.

Onepaundra ce NnoBTaps A0KATO He Ce CTUrHe A0 MbpBaTa
TO4YKa N 0bBMBKATa HE Ce 3aTBOpMU.

EdEeKTUBHOCT

Proposed by R.A. Jarvis in 1973

O(nh) complexity, with n being the total number of points
in the set, and h being the number of points that lie in the
convex hull.

This implies that the time complexity for this algorithm is
the number of points in the set multiplied by the number of
points in the hull

The worst case for this algorithm is denoted by O(n2),
which is not optimal.

Favorable conditions in which to use the Jarvis march
include problems with a very low number of total points, or
a low number of points on the convex hull in relation to the
total number of points.

Graham’s Scan

TOYKMTE Ce COpTUPAT MO HapacTBaHE Ha TEXHUTE Y-

KoopAanHaTu. [py paBEHCTBO NO-MajsikaTa X-KoopAnHaTa ce
NOCTaBs MbpBa.

OcTaHa/IUTe TOYKN Ce COpTMPAT MO HapacTBaHe Ha brbJa

CNPAMO X-OCTa, TOUkaTa P n ToukaTa OT OCTaBalLlOTO
MHO>XECTBO.

CnegoBaTesiHO NbPBU MPU COPTUPAHETO LEe Ca TOYKNTE HaW-
BASCHO C HAW-ManKu bran, @ TOYKUTE HAaWU-BASABO LLUE Ca
nocaeaHu.

http://www.cs.princeton.edu/courses/archive/fall08/cos226
/demo/ah/GrahamScan.html

Graham’s Scan

Once the points are sorted in order in respect to the anchor point
from rightmost to leftmost, the anchor point and the point lying
furthest to the right (the first point in the sorted data) must both
be on the hull.

These two points serve as our initial points on the hull and are
pushed onto a stack representing hull points.

From here, for each consecutive point in the sort, it is determined
whether a right or left turn is taken from the top two items on the
stack to the point. (cross product).

As long as a left hand turn is made, push the point onto the stack.

When a right hand turn is made, pop top point off the stack,
reevaluate and continue popping as long as right hand turns are
made. Then push the new point onto the stack.

When the initial point is reached again, the points on the stack
represent the convex hull.

Pseudocode

Points[1l] is the pivot or anchor point
Stack.push (Points[1]) ;
Stack.push (Points[2]) ;
FOR I = 3 TO Points.length
o = Cross product (Stack.second, Stack.top, Points[i];
IF o ==
THEN
Stack.pop;
Stack.push (Points[i]) ;
ELSE
WHILE o <= 0 and Stack.length > 2
Stack.pop;
o = Cross product (Stack.second, Stack.top, Points[i]);
ENDWHILE
Stack.push (Points[i]) ;
NEXT i

Efficiency.

s In the Graham Scan, the first phase of
sorting points by angle around the anchor
point is of time O(n logn) complexity.

s Phase 2 of this algorithm has a time
complexity of O(n).

= [he total time complexity for this
algorithm is O(n logn) which is much
more efficient than a worse case scenario
of Jarvis march at O(n2).

Divide and Conquer

In this method, two separate hulls are created, one for the
leftmost half of the points, and one for the rightmost half.

To divide in halves, sort by x-coordinates and find the
median. If there is an odd number of points, the leftmost
half should have the extra point.

Recursively find the convex hull for the left set of points
and the right set of points. This gives hull A and hull B.

Stitch together the two hulls to form the hull of the entire
set.

http://www.cse.unsw.edu.au/~lambert/java/3d/divideandc
onquer.html

http://www.cse.unsw.edu.au/~lambert/java/3d/divideandconquer.html
http://www.cse.unsw.edu.au/~lambert/java/3d/divideandconquer.html

Implementation

To stitch the hulls together, the upper and lower tangent
lines must be found.

To find the lower tangent, start with the rightmost point in
hull B and the leftmost point in hull A. While the line
segment formed between these two points is not the lower
tangent line of the hull, figure which of the two points is not
at its lower tangent point.

While A is not the lower tangent point, move around the
hull clockwise, that is A=A - 1.

While B is not at the lower tangent point, move around the
hull counterclockwise, thatis B = B + 1.

When the upper and lower tangent lines are found, march
around hull A and hull B deleting the points that are now
within the merged convex hull.

Efficiency.

The divide and conquer algorithm is also of time complexity
O(n logn).

This algorithm is often used for cases in three dimensions.
A technicality of the divide and conquer method lies in how
many points are in the set. If the set has less than four

points, there is no need to sort the points, but rather for
these special cases, determine the hull separately.

A downside to this algorithm is the overhead associated
with recursive function calls.

Quickhull

Interactive, redraw as you go algorithm.

Similar to quicksort in efficiency.

Sort in terms of increasing x-coordinate values.
Find four extreme points and form a quadrilateral.
Discard all points that lie within the quadrilateral.

Each edge of the quadrilateral is then examined to see whether
any points lie outside the edge of the current hull.

A triangle is drawn from the edge to the point that lies the
furthest outside of the edge. Any points within this triangle are
eliminated because they do not lie on the hull.

The original edge is removed and new edges are formed with the
new point and two closest extreme points.

Edges added to a bucket from which recursion takes place to find
any points that lie outside the edge and drawing new triangles
until all points are eliminated other than the vertices of the hull.

http://www.cs.princeton.edu/courses/archive/spri0/cos226/demo
/ah/QuickHull.html

http://www.cs.princeton.edu/courses/archive/spr10/cos226/demo/ah/QuickHull.html
http://www.cs.princeton.edu/courses/archive/spr10/cos226/demo/ah/QuickHull.html

Efficiency.

Proposed by Preparata and Hong in 1977/
Quickhull method exhibits O(n logn) complexity.
For unfavorable inputs, the worst case can be O(n2).

Overall, this al%orlthm IS dependent upon how evenly the points
are spllt at each stage. At times this algorithm can be more
useful than Graham S scan, but if the points are not evenly
distributed then it is often not.

Points uniformly distributed in a square can throw out all inner
points in only a few iterations.

The quickhull algorithm saves time in that the quicksort of the
points (splitting then into an upper and lower hull) splits the
problem into two smaller sub-problems that are solved the same
way.

It also saves time due to the fact that a significant amount of
points that lie within the quadrilateral formed can be eliminated
Immediately.

The main disadvantage to this algorithm is the overhead
associated with recursive function calls.

