
C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Nine: Classes, Part II

Slides by Evan Gallagher & Nikolay Kirov

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

• To understand how constructors and member

functions act on objects

• To discover appropriate classes for solving

programming problems

• To distribute a program over multiple source files

Chapter Goals

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

A friendly construction worker

reading a class definition

House house1;

House house2;

House house3;

...

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

 A constructor is a member function that

initializes the data members of an object.

(It doesn’t construct?)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

 The constructor is automatically

called whenever an object is created.

CashRegister register1;

(You don’t see it but it’s there.)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

By supplying a constructor,

you can ensure that all data members are properly set

before any member functions act on an object.

(Ah, consistency …)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

By supplying a constructor,

you can ensure that all data members are properly set

before any member functions act on an object.

What would be the value of a data member

that was not (no way!) properly set?

 GARBAGE

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

 “Garbage” is a technical

computer science term.

 It means…

 …well…

 “garbage.”

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

 To understand the importance of constructors,

consider the following statements:

CashRegister register1;

register1.add_item(1.95);

int count = get_count(); // May not be 1

 Notice that the programmer forgot to
call clear before adding items.

 (Smells like “garbage” to me!)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

 To understand the importance of constructors,

consider the following statements:

CashRegister register1;

register1.add_item(1.95);

int count = get_count(); // May not be 1

 Notice that the programmer forgot to
call clear before adding items.

 (Recall that technical computer science term and what it means?)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

 To understand the importance of constructors,

consider the following statements:

CashRegister register1;

register1.add_item(1.95);

int count = get_count(); // May not be 1

 Notice that the programmer forgot to
call clear before adding items.

 (A “garbage” value is not to be trusted.)

 (And preferably not smelled.)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

 Constructors are written to guarantee that an

object is always fully and correctly initialized

when it is defined.

(Ah, consistency …)

(I said that already, didn’t I?)

(At least I am consistent!)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

You declare constructors in the class definition:

class CashRegister

{

public:

 CashRegister(); // A constructor

...

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

The name of a constructor is identical to the name of its class:

class CashRegister

{

public:

 CashRegister(); // A constructor

...

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

There must be no return type, not even void.

class CashRegister

{

public:

 CashRegister(); // A constructor

...

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

And, of course, you must define the constructor.

CashRegister::CashRegister()

{

 item_count = 0;

 total_price = 0;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

 To connect the definition with the class,
you must use the same :: notation

CashRegister::CashRegister()

{

 item_count = 0;

 total_price = 0;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

You should choose initial values

for the data members so the object is correct.

CashRegister::CashRegister()

{

 item_count = 0;

 total_price = 0;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

And still no return type.

CashRegister::CashRegister()

{

 item_count = 0;

 total_price = 0;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

 A constructor with no parameters

is called a default constructor.

CashRegister::CashRegister()

{

 item_count = 0;

 total_price = 0;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

Default constructors are called when you define an object

and do not specify any parameters for the construction.

Notice that you do NOT use an empty set of parentheses.

CashRegister register1;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

register1.item_count and register1.total_price

are set to zero as they should be.

CashRegister register1;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

 Constructors can have parameters,

and constructors can be overloaded:

class BankAccount

{

public:

 // Sets balance to 0

 BankAccount();

 // Sets balance to initial_balance

 BankAccount(double initial_balance);

 // Member functions omitted

private:

 double balance;

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

 When you construct an object, the compiler chooses the

constructor that matches the parameters that you supply:

BankAccount joes_account;

 // Uses default constructor

BankAccount lisas_account(499.95);

 // Uses BankAccount(double) constructor

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

 It is good design to think about what

values you should put in

numeric and pointer data members.

They will be garbage if you don’t set them in the constructor.

Is that OK?

(Son…)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

 Data members of classes that have

constructors will not be garbage.

For example, the string class has a default

constructor that sets strings to the empty string ("").

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors

...

private:

 string name;

 double hourlyRate;

};

THINK: is the default string OK?

THINK, then set.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error: Trying to Use the Constructor to Reset

You cannot use a constructor to “reset” a variable.

It seems like a good idea but you can’t:

CashRegister register1;

...

register1.CashRegister(); // Error

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Constructors – The System Default Constructor

 If you write no constructors at all,

the compiler automatically generates

a system default constructor

that initializes all data members of

class type with their default constructors

(which is just garbage for numeric and pointer data members).

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Initialization Lists

 When you construct an object whose data members

are themselves objects, those objects are

constructed by their class’s default constructor.

However, if a data member belongs to a class

without a default constructor,

you need to invoke the data member’s constructor explicitly.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Initialization Lists

 A class to represent an order might not have

a default constructor:

class Item:

public:

 Item(string item_descript, double item_price);

 // No other constructors

 ...

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Initialization Lists

 A class to represent an order would most likely
have an Item type data member:

class Order

{

public:

 Order(string customer_name,

 string item_descript,

 double item_price);

...

private:

 Item article;

 string customer;

};

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Initialization Lists

 The Order constructor must call the Item constructor.

 This is done in the initializer list.

 The initializer list goes before the opening brace of the

constructor by putting the name of the data member

followed by their construction arguments:

Order::Order(string customer_name,

 string item_description,

 double item_price)

 : article(item_description, item_price)

 { ...

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Initialization Lists

 Any other data members can also be initialized in the initializer

list by putting their initial values in parentheses after their name,

just like the class type data members.

These must be separated by commas:

Order::Order(string customer_name,

 string item_description,

 double item_price)

 : article(item_description, item_price),

 customer(customer_name)

{

}

 Notice there’s nothing to do in the body of the constructor now.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Objects

Recall how you hand traced code

 to help you understand functions.

Adapting tracing for objects

will help you understand objects.

Grab some index cards

(blank ones).

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Objects

You know that the public: section is for others.
That’s where you’ll write methods for their use.

That will be the front of the card.

class CashRegister

{

public:

 void clear();

 void add_item(double price);

 double get_total() const;

 int get_count() const;

private:

 int item_count;

 double total_price;

};

...

CashRegister reg1;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Objects

 You know that the private: section is for
your data – they are not allowed to mess with it
except through the public methods you provide.

That will be the back of the card.

class CashRegister

{

public:

 void clear();

 void add_item(double price);

 double get_total() const;

 int get_count() const;

private:

 int item_count;

 double total_price;

};

...

CashRegister reg1;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Objects

 You’ll need a card for every variable.

 You might want to make several now.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Objects

 When an object is constructed,
add the variable’s name to the front of a card

and fill in the initial values.

 0 0

CashRegister reg1;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Objects

 You would do this
 for every variable.

 0 0

 0 0

CashRegister reg1;

CashRegister reg2;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Objects

 When a method is invoked,
grab the right card...

 0 0

 0 0

CashRegister reg1;

CashRegister reg2;

reg1.addItem(19.95);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Objects

 …flip it over…

 0 0

 0 0

CashRegister reg1;

CashRegister reg2;

reg1.addItem(19.95);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Objects

 …cross out the old values...

 0 0

 0 0

CashRegister reg1;

CashRegister reg2;

reg1.addItem(19.95);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Objects

 …then write the new values below.

 0 0
 1 19.95

 0 0

CashRegister reg1;

CashRegister reg2;

reg1.addItem(19.95);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Objects

 These cards can help you in development

when you need to add more functionality:

Suppose you are asked to get the sales tax.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Objects

You would add that to the front of the cards.
Grab any card – they will all have to be redone.

Add the newly requested method.

Then flip it over and start thinking.

get_sales_tax

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Objects

You would add that to the front of the cards.
Grab any card – they will all have to be redone.

Add the newly requested method.

Then flip it over and start thinking.

1 19.95

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Tracing Objects

I have to calculate the sales tax.

Do I have enough information here on the back of this card?

I can only use these and any values passed
in through parameters and global variables.

get_sales_tax

0 0

1 19.95

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

0 0

1 19.95

Tracing Objects

 Tax rate?
 Need a new data member tax_rate for this which

 would be set in the constructor to a global constant.
 Are all items taxable?
 Need to add another parameter for taxable-or-not to

 add_item which would appropriately update...
 …what???
 Need a new data member:

 taxable_total.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Tracing Objects

 Add these things and do some tracing.

CashRegister reg2(TAX_RATE);

reg2.addItem(3.95, false);

reg2.addItem(19.95, true);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Discovering Classes

 Do you recall all those little mini-English

lessons we’ve been throwing in?

Now you get to actually use English
in Object Oriented Programming!

(Hi!)

(That’s Japanese for “yes”.)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Discovering Classes

 Using nouns and verbs

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Discovering Classes

 One simple approach for discovering classes

and member functions is to look for

the nouns and verbs

in the problem description.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Discovering Classes

Often times,

• nouns correspond to classes, and

• verbs correspond to member functions.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Discovering Classes

Many classes are abstractions of real-life entities.

• BankAccount

• CashRegister

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Discovering Classes

 Generally, concepts from the problem domain,

be it science, business, or a game, make good classes.

 The name for such a class should be

a noun that describes the concept.

 Other frequently used classes represent

system services such as files or menus.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Not Discovering Classes

 What might not be a good class?

If you can’t tell from the class name what

 an object of the class is supposed to do,

 then you are probably not on the right track.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Not Discovering Classes

 For example, you might be asked to write

 a program that prints paychecks.

 You start by trying to design a
class PaycheckProgram.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Not Discovering Classes

class PaycheckProgram

?

What would an object of this class do?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Not Discovering Classes

class PaycheckProgram

? ?

 An object of this class would have to

do everything!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Not Discovering Classes

class PaycheckProgram

? ? ?

That doesn’t simplify anything.

A better class would be:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Discovering Classes

class Paycheck

! ! ! ! !

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Not Discovering Classes

 Another common mistake, made particularly

by those who are used to writing programs that consist

of functions, is to turn an action into a class.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Not Discovering Classes

 For example, if you are to compute

a paycheck, you might consider writing a

 class ComputePaycheck.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Not Discovering Classes

class ComputePaycheck

 But can you visualize a
“ComputePaycheck” object?

A thing that is a computePaycheck?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Not Discovering Classes

class ComputePaycheck

The fact that “computepaycheck” is not a noun
tips you off that you are on the wrong track.

On the other hand, a “paycheck” class makes intuitive sense.

 (The word “paycheck” is a noun.)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Discovering Classes

 You can visualize a paycheck object.

 You can then think about useful member functions
of the Paycheck class, such as compute_taxes,

that help you solve the problem.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

“Has-a” relationship

 When you analyze a problem description,

you often find that you have multiple classes.

It is then helpful to consider how these classes are related.

 One of the fundamental relationships between classes

is the “aggregation” relationship

(which is informally known as the “has-a” relationship).

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

“Has-a” relationship

 The aggregation relationship states that objects of one class

contain objects of another class.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

“Has-a” relationship

Consider a quiz that is made up of questions.

Since each quiz has one or more questions,
we say that the class Quiz aggregates the class Question

(not to be confused with “begs the question”).

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

UML (Unified Modeling Language)

 There is a standard notation to describe class relationships:

 a UML class diagram

(Unified Modeling Language)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

UML (Unified Modeling Language)

 In the UML notation,

aggregation is denoted by a line

with a diamond-shaped symbol

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 The problem states that the Quiz object

manages lots of Question objects.

 The code follows directly, using a vector to mange
the Questions:

class Quiz

{

};

UML (Unified Modeling Language)

...

private:

vector<Question> questions;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Discovering Classes

 In summary, when you analyze a problem description,

you will want to carry out these tasks:

• Find the concepts that you need to implement as classes.

Often, these will be nouns in the problem description.

• Find the responsibilities of the classes.

Often, these will be verbs in the problem description.

• Find relationships between the classes that you have

discovered.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation

 When you write and compile small programs,

you can place all your code into a single source file.

 When your programs get larger or you

work in a team, that situation changes.

 You will want to split your code into separate source files.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation

There are two reasons why this split becomes necessary.

 First, it takes time to compile a file, and it seems silly

 to wait for the compiler to keep translating code that

 doesn’t change.

 If your code is distributed over several source files,

 then only those files that you changed need to be

 recompiled.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation

 The second reason becomes apparent when you work

with other programmers in a team.

 It would be very difficult for multiple programmers to

edit a single source file simultaneously.

 Therefore, the program code is broken up so that each

programmer is solely responsible for a separate set of files.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation

 If your program is composed of multiple files,

some of these files will define data types or

functions that are needed in other files.

 There must be a path of communication between the files.

 In C++, that communication happens through

the inclusion of header files.

Yes, #include.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation

 The code will be in two kinds of files:

header files

(which will be #include-ed)

source files

(which should never be #include-ed)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation

A header file contains

• the interface:

– Definitions of classes.

– Definitions of constants.

– Declarations of nonmember functions.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation

A source file contains

• the implementation:

– Definitions of member functions.

– Definitions of nonmember functions.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation

There will also be either:

a “tester” program

 or

the real problem solution

 This is where main goes.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation

 For the CashRegister class,

you create a pair of files:

cashregister.h

the interface – the class definition

cashregister.cpp

the implementation – all the member function definitions

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation: The Cash Register Program

#ifndef CASHREGISTER_H

#define CASHREGISTER_H

/**

 A simulated cash register that tracks

 the item count and the total amount due.

*/

class CashRegister

This is the header file, cashregister.h

Notice the first two lines.

There is an ending #endif at the end of the file.

This makes sure the header is only included once.

Always write these. Use the name as shown.

ch09/cashregister.h

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation: The Cash Register Program

/**

 A simulated cash register that tracks

 the item count and the total amount due.

*/

class CashRegister

{

public:

 /**

 Constructs a cash register with

 cleared item count and total.

 */

 CashRegister();

 /**

 Clears the item count and the total.

 */

 void clear();

ch09/cashregister.h

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation: The Cash Register Program

 /**

 Adds an item to this cash register.

 @param price the price of this item

 */

 void add_item(double price);

 /**

 @return the total amount of the current sale

 */

 double get_total() const;

 /**

 @return the item count of the current sale

 */

 int get_count() const;

ch09/cashregister.h

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation: The Cash Register Program

private:

 int item_count;

 double total_price;

};

#endif

 You include this header file whenever the definition
of the CashRegister class is required.

 Since this file is not a standard header file, you must enclose
its name in quotes, not <...>, when you include it, like this:

#include "cashregister.h"

And now the implementation (.cpp) file:

ch09/cashregister.h

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation: The Cash Register Program

#include "cashregister.h"

CashRegister::CashRegister()

{

 clear();

}

void CashRegister::clear()

{

 item_count = 0;

 total_price = 0;

}

 Notice that the implementation
file #includes its own header file.

ch09/cashgregister.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation: The Cash Register Program

void CashRegister::add_item(double price)

{

 item_count++;

 total_price = total_price + price;

}

double CashRegister::get_total() const

{

 return total_price;

}

int CashRegister::get_count() const

{

 return item_count;

}

ch09/cashgregister.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation

 Notice that the member function comments

are in the header file, not the .cpp file.

 They are part of the interface,

not the implementation.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation

 There’s no main!

HELP!

 No, someone who wants to use your class will write
their own main and #include your header.

Like this:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation: The Cash Register Program

#include <iostream>

#include <iomanip>

#include "cashregister.h"

using namespace std;

/**

 Displays the item count and total

 price of a cash register.

 @param reg the cash register to display

*/

void display(CashRegister reg)

{

 cout << reg.get_count() << " $“

 << fixed << setprecision(2)

 << reg.get_total() << endl;

}

ch09/registertest2.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Separate Compilation: The Cash Register Program

int main()

{

 CashRegister register1;

 register1.clear();

 register1.add_item(1.95);

 display(register1);

 register1.add_item(0.95);

 display(register1);

 register1.add_item(2.50);

 display(register1);

 return 0;

}

ch09/registertest2.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

NAMESPACE POLUTION ERROR

FIX

POLUTION OF

NAMESPACE

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Pointers to Objects

 Dynamically Allocating Objects

 How about dynamic objects?

 Fine:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Pointers to Objects

CashRegister* register_pointer = new CashRegister;

BankAccount* account_pointer = new BankAccount(1000);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Accessing: The -> Operator

 Because register_pointer is a pointer

to a CashRegister object,

the value *register_pointer denotes

the CashRegister object itself.

To invoke a member function on that object, you might call

(*register_pointer).add_item(1.95);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Accessing: The -> Operator

 The parentheses are necessary because in C++ the
dot operator takes precedence over the * operator.

The expression without the parentheses

would be a syntax error:

 *register_pointer.add_item(1.95);

 // Error – you can’t apply . to a pointer

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Pointers to Objects

 Because calling a member function through a pointer is very

common, the designers of C++ supply an operator to abbreviate

the “follow pointer and access member” operation.

That operator is written -> and usually pronounced as “arrow”.

Here is how you use the “arrow” operator:

register_pointer->add_item(1.95);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

English?

 And now for another English sort of thing:

The this pointer.

(Yes, it’s correct English)

(if you are talking about C++.)

Remember, way back there,

when we said:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implicit Parameters

 “We’ll get back to this, later …”

Well, now is later!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implicit Parameters

 this

That’s the this pointer.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Implicit Parameters

The variable register1 is the implicit parameter.
 this = register1 (assigned by the system)

register1.add_item(1.95);

void CashRegister::add_item(double price)

{

 implicit parameter.item_count++;

 implicit parameter.total_price =

 implicit parameter.total_price + price;

}

 this.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The this Pointer

 Each member function has a special parameter variable,

called this,

which is a pointer to the implicit parameter.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The this Pointer

For example, consider the member function

CashRegister::add_item

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The this Pointer

 If you call

 ... register1.add_item(1.95) ...

 then the this pointer has

type CashRegister* and points

to the register1 object.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The this Pointer

(I don’t see it.)

No, but you can use it:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The this Pointer

 ... register1.add_item(1.95) ...

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The this Pointer

 If you call

 ... register1.add_item(1.95) ...

The this pointer is made to point to the implicit variable.

(The system did that assignment behind your back.)

(Thank you!)

 this 08273

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

void CashRegister::add_item(double price)

{

 this->item_count++;

 this->total_price = this->total_price + price;

}

The this Pointer

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The this Pointer

void CashRegister::add_item(double price)

{

 this->item_count++;

 this->total_price = this->total_price + price;

}

 this points at the that implicit parameter.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The this pointer is not necessary here, but some

programmers like to use the this pointer to make

it very, very clear that item_count is a

data member and not a variable.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

The this Pointer

void CashRegister::add_item(double price)

{

 this->item_count++;

 this->total_price = this->total_price + price;

}

The this pointer is not necessary here, but some

programmers like to use the this pointer to make it

very, very clear
that item_count and total_price are

data members—not (plain old) variables or parameters.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The this pointer is not necessary here, but some

programmers like to use the this pointer to make

it very, very clear that item_count is a

data member and not a variable.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Destructors and Resource Management

 When a programmer uses new to obtain a dynamic array,

 she is requesting a system resource.

 And as all good recyclers know…

 …resources are limited and should be returned.

peas recyple

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

class String

{

 ...

private:

 char* char_array;

}

String::String(const char initial_chars[])

{

 char_array = new char[strlen(initial_chars) + 1];

 strcpy(char_array, initial_chars);

}

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Destructors and Resource Management

The characters of a String

are stored on the heap,

a system resource.

THE HEAP:
No Entry Without

Permission Of OS!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The this pointer is not necessary here, but some

programmers like to use the this pointer to make

it very, very clear that item_count is a

data member and not a variable.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Destructors and Resource Management

Constructors don’t really construct (they initialize).

There is another method that doesn’t

really do what it’s name implies:

the destructor.

(Not in any way associated with professional wrestling.)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The this pointer is not necessary here, but some

programmers like to use the this pointer to make

it very, very clear that item_count is a

data member and not a variable.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Destructors and Resource Management

A destructor, like a constructor, is written

without a return type and its name is

the tilde character followed by the name of the class:

~ String

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The this pointer is not necessary here, but some

programmers like to use the this pointer to make

it very, very clear that item_count is a

data member and not a variable.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Destructors and Resource Management

A class can have only one destructor

and

it cannot have any parameters.

String::~ String()

 { ...

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The this pointer is not necessary here, but some

programmers like to use the this pointer to make

it very, very clear that item_count is a

data member and not a variable.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Destructors and Resource Management

Destructors don’t really destruct:

String::~ String()

 { ...

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The this pointer is not necessary here, but some

programmers like to use the this pointer to make

it very, very clear that item_count is a

data member and not a variable.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Destructors and Resource Management

Destructors don’t really destruct:

they are used to recycle resources.

String::~ String()

 { ...

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The this pointer is not necessary here, but some

programmers like to use the this pointer to make

it very, very clear that item_count is a

data member and not a variable.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Destructors and Resource Management

Destructors don’t really destruct:

they are used to recycle resources.

String::~ String()

 {

 delete[] char_array;

 }

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The memory for the characters in a string are properly recycled..

void fun()

{

 String name("Harry");

 ...

}

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Destructors and Resource Management THE HEAP:
No Entry Without

Permission Of OS!

Heap memory is

allocated by the

constructor

Do you seen a method being invoked?

Right there!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Destructors are automatically invoked when

an object of that type is no longer needed.

The memory for the characters in a string are properly recycled..

void fun()

{

 String name("Harry");

 ...

}

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Destructors and Resource Management THE HEAP:
No Entry Without

Permission Of OS!

String::~String() is invoked right there.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Unfortunately, it’s a more complicated

when assignment comes along:

void no_fun()

{

 String name1("Harry");

 String name2("Sally");

 name1 = name2;

 ...

}

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Destructors and Resource Management THE HEAP:
No Entry Without

Permission Of OS!

Heap memory is

allocated by both

the constructors

What happened to the memory for “Harry”?

Now what?!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 This is not a topic covered in these slides.

 It involves:

 the destructor

and

 another kind of constructor - the copy constructor

and

 rewriting how the assignment operation works.

These three topics together are called The Big Three.

(Again, not in any way associated with professional wrestling.)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Destructors and Resource Management

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Summary

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Summary

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Summary

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Summary

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

End Chapter Nine: Classes, Part II

Slides by Evan Gallagher & Nikolay Kirov

