
C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Seven: Pointers, Part II

Slides by Evan Gallagher & Nikolay Kirov

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

• To be able to convert between string objects and

character pointers

• To become familiar with dynamic memory allocation

and deallocation

• To learn how to use arrays and vectors of pointers

Chapter Goals

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

C and C++ Strings

 C++ has two mechanisms for manipulating strings.

The string class

• Supports character sequences of arbitrary length.

• Provides convenient operations such as concatenation

and string comparison.

C strings

• Provide a more primitive level of string handling.

• Are from the C language (C++ was built from C).

• Are represented as arrays of char values.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

char Type and Some Famous Characters

The type char is used to store an individual character.

Some of these characters are plain old letters and such:

 char yes = 'y';

 char no = 'n';

 char maybe = '?';

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

char Type and Some Famous Characters

Some are numbers masquerading as digits:

char theThreeChar = '3';

That is not the number three – it‟s the character 3.

'3' is what is actually stored in a disk file

when you write the int 3.

Writing the variable theThreeChar to a file

would put the same '3' in a file.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

char Type and Some Famous Characters

 Recall that a stream is a
sequence of characters – chars.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

char Type and Some Famous Characters

 So some characters are literally what they are:

'A'

Some represent digits:

 '3'

Some are other things that can be typed:

 'C'

 '+'

 '+'

 but…

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Some Famous Characters

Some of these characters are true individuals.

They are quite “special”:

'\n'

'\t‘

These are still single (individual) characters:

the escape sequence characters.

And one you can output to the screen

in order to annoy those around you

 '\a'

– the alert character.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Some Famous Characters

 And there is one special character that

is especially special to C strings:

The null terminator character:

'\0'

 That is an escaped zero.

 It‟s in ASCII position zero.

 It is the value 0 (not the character zero, '0')

If you output it to screen nothing will appear.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Some Famous Characters

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

The Null Terminator Character and C Strings

 The null character is special to C strings because

it is always the last character in them:

"CAT" is really this sequence of characters:

'C' 'A' 'T' '\0'

 The null terminator character indicates the end

of the C string

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

The Null Terminator Character and C Strings

 The literal C string "CAT" is

actually an array of four chars stored

 somewhere in the computer.

 In the C programming language,

literal strings are always stored as

character arrays.

 Now you know why C++ programmers often refer

to arrays of char values as “C strings”.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Pop Quiz #2.

Q:

Is "C strings" a string?

Yes

 …wait…

 No

 …wait…

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Pop Quiz #2

Answer:

"C strings" is NOT an object of string type.

"C strings" IS an array of chars with a null terminator

character at the end.

(and that English was correct!)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Character Arrays as Storage for C Strings

 As with all arrays, a string literal can be

assigned to a pointer variable that points

 to the initial character in the array:

char* char_pointer = "Harry";

 // Points to the 'H'

null terminator

320300

320301

320302

320303

320304

320305

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Using the Null Terminator Character

Functions that operate on C strings rely on this terminator.

The strlen function returns the length of a C string.

#include <cstring>

int strlen(const char s[])

{

 int i = 0;

 // Count characters before

 // the null terminator

 while (s[i] != '\0') { i++; }

 return i;

}

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Using the Null Terminator Character

 The call strlen("Harry") returns 5.

The null terminator character is not counted

as part of the “length” of the C string – but it‟s there.

Really, it is.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

 Literal C strings are considered constant.

You are not allowed to modify its characters.

Character Arrays

 If you want to modify the characters in a C string,

define a character array to hold the characters instead.

For example:

// An array of 6 characters

char char_array[] = "Harry";

 Isn‟t something missing?

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Character Arrays

The compiler counts the characters in the string that is

used for initializing the array, including the null terminator.

 char char_array[] = "Harry";

I’m the compiler && I can count to 6

&& I wasn’t fooled by that null terminator

(6)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Character Arrays

The compiler counts the characters in the string that is

used for initializing the array, including the null terminator.

 char char_array[] = "Harry";

I’m the compiler && I put that 6 there

(6)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Character Arrays

You can modify the characters in the array:

 char char_array[] = "Harry";

 char_array[0] = 'L';

I’m the programmer && I changed Harry into Larry!

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Converting Between C and C++ Strings

 The cstdlib header declares a useful function:

int atoi(const char s[])

 The atoi function converts a character array

containing digits into its integer value:

char* year = "2012";

int y = atoi(year);

y is the integer 2012

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Converting Between C and C++ Strings

Unfortunately there is nothing like this for the string class!

(can you believe that?!)

The c_str member function offers an “escape hatch”:

string year = "2012";

int y = atoi(year.c_str());

Again, y is the integer 2012

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Converting Between C and C++ Strings

Converting from a C string to a C++ string is very easy:

string name = "Harry";

name is initialized with the C string "Harry".

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Converting Between C and C++ Strings

 Up to this point, we have always used the
substr member function to access individual

characters in a C++ string:

string name = "Harry";

 ...name.substr(3, 1)...

 yields a string of length 1

containing the character at index 3

(the second „r‟)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Converting Between C and C++ Strings

 You can access individual characters with the [] operator:

string name = "Harry";

name[3] = 'd';

I’m the programmer && I changed Harry into Hardy!

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Converting Between C and C++ Strings

 You can write a function that will return
the uppercase version of a string.

The toupper function is defined in the cctype header.

It converts lowercase characters to uppercase.

(The tolower function does the opposite.)

char ch = toupper('a');

ch contains 'A'

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Converting Between C and C++ Strings

/**

 Makes an uppercase version of a string.

 @param str a string

 @return a string with the characters in str converted to uppercase

*/

string uppercase(string str)

{

 string result = str; // Make a copy of str

 for (int i = 0; i < result.length(); i++)

 {

 // Convert each character to uppercase

 result[i] = toupper(result[i]);

 }

 return result;

}

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

C String Functions

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

 In many programming situations, you know

you will be working with several values.

 You would normally use an array

for this situation, right?

 (yes)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

 But suppose you do not know

beforehand

how many values you need.

 So now can you use an array?

 (oh dear!)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

The size of a static array must

be known when you define it.

To solve this problem, you can use

dynamic allocation.

Dynamic arrays are not static.

 (Static, like all facts.)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

 To use dynamic arrays, you ask the C++

run-time system to create new space for

an array whenever you need it.

This is at RUN-TIME?

On the fly?

Arrays on demand!

 (cool)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

Where does this memory for my

on-demand arrays come from?

The OS keeps

 a heap (dynamic memory):

a Heap`O´RAM

 (to give to good little programmers like you)

(and poets)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

Yes, it‟s really called:

The Heap

(or sometimes the freestore

– and it really is free!

All you have to do is ask)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

 To ask for more memory,
say a double, you use the new operator:

new double

 the runtime system seeks out room for
a double on the heap, reserves it just for your

use and returns a pointer to it.

 This double location

does not have a name.

 (this is run-time)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

 But just how useful is one single double?

(Not very)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

How about a brand new array from that Heap`O´RAM?

(Yes, please)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

To request a dynamic array you use the same new

operator with some looks-like-an-array things added:

new double[n]

where n is the number of doubles you want

and, again, you get a pointer to the array.

an array of doubles on demand!

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

You need a pointer variable to hold the pointer you get:

 double* account_pointer = new double;

double* account_array = new double[n];

 Now you can use account_array as an array.

 The magic of array/pointer duality

lets you use the array notation
 account_array[i] to access the ith element.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

When your program no longer needs the memory
that you asked for with the new operator,

you must return it to the heap
using the delete operator for single areas of memory

(which you would probably never use anyway).

delete account_pointer;

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

Or more likely, you allocated an array.
So you must use the delete[] operator.

delete[] account_array;

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

After you delete a memory block,

you can no longer use it.

The OS is very efficient – and quick – “your” storage

space may already be used elsewhere.

delete[] account_array;

account_array[0] = 1000;

 // NO! You no longer own the

 // memory of account_array

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

 Unlike static arrays,

which you are stuck with after you create them,

you can change the size of a dynamic array.

How?

 Make a new, improved, bigger array

and copy over the old data – but remember

to delete what you no longer need.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation – Resizing an Array

double* bigger_array = new double[2 * n];

for (int i = 0; i < n; i++)

{

 bigger_array[i] = account_array[i];

}

delete[] account_array;

account_array = bigger_array;

n = 2 * n;

 (n is the variable used with the array)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation – Serious Business

Son,

we need to talk.

We need to have a serious discussion about safety.

Safety and security are very important issues.

Really – THIS IS SERIOUS

Sit down!

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation – Serious Business

 Son, heap allocation is a powerful feature,

and you have proven yourself to be a responsible

enough programmer to begin using dynamic arrays

but you must be very careful to

follow these rules precisely:

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation – THE RULES

1. Every call to new must be matched

by exactly one call to delete.

2. Use delete[] to delete arrays.

And always assign NULL to the pointer after that.

3. Don’t access a memory block

after it has been deleted.

If you don’t follow these rules, your program can

 crash or run unpredictably

 or worse…

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Dynamic Memory Allocation – Common Errors

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Common Errors Dangling Pointers – Serious Business

Son, there’s more:

DANGLING

 Dangling pointers are when you use a pointer that

has already been deleted or was never initialized.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Common Errors Dangling Pointers – Serious Business

int* values = new int[n];

// Process values

delete[] values;

// Some other work

values[0] = 42;

Good, son.

Being responsible!

Son!
NO!!!

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Common Errors Dangling Pointers – Serious Business

 The value in an uninitialized or

deleted pointer might point somewhere

in the program you have

no right to be accessing.

 You can create real damage by

writing to the location to which it points.

 It’s not yours to play with, son.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Common Errors Dangling Pointers – Serious Business

 Even just reading from that location

can crash your program.

You’ve seen what’s happened to other programs.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Common Errors Dangling Pointers – Serious Business

Remember what happened to Jimmy?

A dialog box with a bomb icon.

And Ralph?

 “General protection fault.”

And poor Henry’s son?

“Segmentation fault” came up,

and the program was terminated.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Common Errors Dangling Pointers – Serious Business

Or worse, son – you could hurt yourself !

If that dangling pointer points at your own data,

and you write to it –

you may very well have messed up your own

future,

your own data!

Just don’t do it, son!

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Common Errors Dangling Pointers – Serious Business

Son, programming with pointers requires iron

discipline.

• Always initialize pointer variables.

• If you can’t initialize them with the return value
of new or the & operator, then set them to NULL.

• Never use a pointer that has been deleted.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Common Errors Memory Leaks – Serious Business

 And Son, I’m sorry to say, there’s even more:

LEAKS

 A memory leak is when use new to get dynamic

memory but you fail to delete it when you are done.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Common Errors Memory Leaks – Serious Business

I know, I know, you think that a few doubles

and a couple of strings left on the heap

now and then doesn’t really hurt anyone.

But son, what if everyone did this?

Think of a loop – 10,000 times you grab just a few bytes

from the heap and don’t give them back!

What happens when there’s no more heap

for the OS to give you?

Just give it up, son – give back what you no longer need.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Common Errors Memory Leaks – Serious Business

 Remember Rule #1.

1. Every call to new must be matched

by exactly one call to delete.

And after deleting, set it to NULL so

that it can be tested for danger later.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Common Errors Dangling Pointers – Serious Business

int* values = new int[n];

// Process values

delete[] values;

values = NULL;

later...

if values = NULL ...

Very good, son.

Being very

responsible!

Great!

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Common Errors Memory Leaks – Serious Business

Son, I think you are ready to go on…

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Arrays and Vectors of Pointers

 When you have a sequence of pointers,

you can place them into an array or vector.

An array and a vector of ten int* pointers are defined as

int* pointer_array[10];

vector< int* > pointer_vector(10);

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Arrays and Vectors of Pointers – A Triangular Array

In this array, each row is a different length.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Arrays and Vectors of Pointers – A Triangular Array

In this situation, it would not be very efficient

to use a two-dimensional array,

because almost half of the elements would be wasted.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

A Galton Board

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

A Galton Board Simulation

We will develop a program that

uses a triangular array to simulate

a Galton board.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

A Galton Board Simulation

A Galton board consists of a pyramidal

arrangement of pegs and a row of bins

at the bottom.

Balls are dropped onto the top peg

and travel toward the bins.

At each peg, there is a 50 percent

chance of moving left or right.

The balls in the bins approximate a bell-curve distribution.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

A Galton Board Simulation

The Galton board can only show the balls in the bins,

but we can do better by keeping a counter for each peg,

incrementing it as a ball travels past it.

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

We will simulate a board with ten rows of pegs.

Each row requires an array of counters.

The following statements initialize the triangular array:

int* counts[10];

for (int i = 0; i < 10; i++)

{

 counts[i] = new int[i + 1];

}

A Galton Board Simulation

counts

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

We will need to print each row:

// print all elements in the ith row

for (int j = 0; j <= i; j++)

{

 cout << setw(4) << counts[i][j];

}

cout << endl;

A Galton Board Simulation

if i is 4

counts

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

We will simulate a ball bouncing through the pegs:

int r = rand() % 2;

// If r is even, move down,

// otherwise to the right

if (r == 1)

{

 j++;

}

counts[i][j]++;

A Galton Board Simulation

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

A Galton Board Simulation

#include <iostream>

#include <iomanip>

#include <cstdlib>

#include <ctime>

using namespace std;

int main()

{

 srand(time(0));

 int* counts[10];

 // Allocate the rows

 for (int i = 0; i < 10; i++)

 {

 counts[i] = new int[i + 1];

 for (int j = 0; j <= 1; j++)

 {

 counts[i][j] = 0;

 }

 }

ch07/galton.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

A Galton Board Simulation

 const int RUNS = 1000;

 // Simulate 1,000 balls

 for (int run = 0; run < RUNS; run++)

 {

 // Add a ball to the top

 counts[0][0]++;

 // Have the ball run to the bottom

 int j = 0;

 for (int i = 1; i < 10; i++)

 {

 int r = rand() % 2;

 // If r is even, move down,

 // otherwise to the right

 if (r == 1)

 {

 j++;

 }

 counts[i][j]++;

 }

 }

ch07/galton.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

A Galton Board Simulation

 // Print all counts

 for (int i = 0; i < 10; i++)

 {

 for (int j = 0; j <= i; j++)

 {

 cout << setw(4) << counts[i][j];

 }

 cout << endl;

 }

 // Deallocate the rows

 for (int i = 0; i < 10; i++)

 {

 delete[] counts[i];

 }

 return 0;

}

ch07/galton.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

 This is the output

from a run of the program:

1000

 480 520

 241 500 259

 124 345 411 120

 68 232 365 271 64

 32 164 283 329 161 31

 16 88 229 303 254 88 22

 9 47 147 277 273 190 44 13

 5 24 103 203 288 228 113 33 3

 1 18 64 149 239 265 186 61 15 2

A Galton Board Simulation

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Chapter Summary

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Chapter Summary

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Chapter Summary

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

End Chapter Seven: Pointers, Part II

Slides by Evan Gallagher & Nikolay Kirov

