
C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Chapter Seven: Pointers, Part I

Slides by Evan Gallagher & Nikolay Kirov

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

• To be able to declare, initialize, and use pointers

• To understand the relationship between arrays and

pointers

Chapter Goals

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Pointers

What’s stored in that variable?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Pointers

No, that one – the one I’m pointing at!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 A variable contains a value,

but a pointer specifies where a value is located.

 A pointer denotes the

memory location of a variable

Pointers

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Pointers

Yes, I mean x

Look:

I’m holding a

pointer value!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

• In C++, pointers are important for several reasons.

– Pointers allow sharing of values stored in variables

in a uniform way

– Pointers can refer to values that are allocated on

demand (dynamic memory allocation)

– Pointers are necessary for implementing

polymorphism, an important concept in object-

oriented programming (later)

Pointers

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Consider a person.

A chef.

A Banking Problem

(Harry)

Hi. Nice to see

you again.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Harry has more than one bank account.

Harry Needs a Banking Program

Business is

GREAT with those

algorithms!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Harry wants a program for making

bank deposits and withdrawals.

 (You can write that code by now!)

Harry Needs a Banking Program

… balance += depositAmount …

… balance -= withdrawalAmount …

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 But not all deposits and withdrawals

should be from the same bank.

Harry Needs a Multi-Bank Banking Program

… balance += depositAmount …

… balance -= withdrawalAmount …

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 But withdrawing is withdrawing

 – no matter which bank it is.

Same with depositing.

Same problem – same code, right?

Good Design

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 By using a pointer,

it is possible to switch to a different account

 without modifying the code for

deposits and withdrawals.

 (Ah, code reuse!)

Pointers to the Rescue

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Harry starts with a variable for storing an account balance.

It should be initialized to 0 since there is no money yet.

double harrys_account = 0;

Pointers to the Rescue

Yes, a chef -

&&

a

programmer!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

If Harry anticipates that he may someday use other

accounts, he can use a pointer to access any accounts.

So Harry also declares a pointer variable named

 account_pointer :

Pointers to the Rescue

The type of this variable is “pointer to double”.

double* account_pointer

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

A pointer to double type can hold the address of a double.

So what’s an address?

Addresses and Pointers

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Here’s a picture of RAM.

Addresses and Pointers

20266

20274

20292

20300

20308

20316

20324

20332

20340

20348

Every byte in RAM

has an address.

an address

another address

(shown in groups of eight bytes)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Here’s how we have pictured a variable in the past:

Addresses and Pointers

0 harrys_account

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

But really it’s been like this all along:

Addresses and Pointers

20266

20274

20292

20300

20308

20316

20324

20332

20340

20348

harrys_account 0

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 The address of the variable named harrys_account

Addresses and Pointers

20266

20274

20292

20300

20308

20316

20324

20332

20340

20348

harrys_account 0

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 The address of the variable named harrys_account is 20300

Addresses and Pointers

20266

20274

20292

20300

20308

20316

20324

20332

20340

20348

harrys_account 0

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

So when Harry declares a pointer variable,

he also initializes it to point to harrys_account:

double harrys_account = 0;

Pointers to the Rescue

double* account_pointer = & harrys_account;

The & operator yields the location (or address) of a variable.

Taking the address of a double variable yields a value of type

double* so everything fits together nicely.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

double harrys_account = 0;

Pointers to the Rescue

double* account_pointer = & harrys_account;

account_pointer now contains the

address of harrys_account

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

double harrys_account = 0;

Pointers to the Rescue

double* account_pointer = & harrys_account;

account_pointer now “points to” harrys_account

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

And, of course, account_pointer is somewhere in RAM:

Addresses and Pointers

20266

20274

20292

20300

20308

20316

20324

20332

20340

20348

harrys_account

account_pointer

0

20300

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Pointers

I’m holding

the address of x

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 To access a different account, Harry (and you) would
 change the pointer value stored in account_pointer:

 double harrys_account = 0;

account_pointer = &harrys_account;

 Harry (and you) would use account_pointer

to access harrys_account.

Addresses and Pointers

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 To access a different account, like joint_account,

Harry (and you) would change the pointer value stored in
account_pointer and similarly use account_pointer.

 double harrys_account = 0;

account_pointer = &harrys_account;

 double joint_account = 1000;

account_pointer = &joint_account;

Addresses and Pointers

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Do note that the computer stores numbers,

not arrows.

Addresses and Pointers – and ARROWS

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Harry makes his first ALGORITMMMMMCAKE sale.

Harry Sells An ALGORITHMMMMMCAKE

That will be

$1,000…

…cash.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Harry needs to depost this cash into his account

 – into the harrys_account variable

– And Deposits the Money

Off to the bank.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 When you have a pointer to a variable, you will want to

access the value to which it points.

... * account_pointer ...

 In C++ the * operator is used to indicate the memory

location associated with a pointer.

In the C++ standard, this operator is called the indirection

operator, but it is also commonly called the

dereferencing operator.

Accessing the Memory Pointed to by A Pointer Variable

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 An expression such as *account_pointer can be used

wherever a variable name of the same type can be used:

// display the current balance

cout << *account_pointer << endl;

It can be used on the left or the right of an assignment:

// withdraw $100

*account_pointer = *account_pointer - 100;

 (or both)

Accessing the Memory Pointed to by A Pointer Variable

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Harry at the Bank …

What a long line at this bank!

…, …, …,

…, …, …, …, …

…, …, …,

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Harry at the Bank …

What?

Oh. Yes.

I’d like to make a

deposit, please.

Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

// deposit $1000

*account_pointer = *account_pointer + 1000;

Harry Makes the Deposit

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Of course, this only works

if account_pointer is pointing

to harrys_account!

Accessing the Memory Pointed to by A Pointer Variable

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

When a pointer variable is first defined,

it contains a random address.

Using that random address is an error.

Errors Using Pointers – Uninitialized Pointer Variables

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

In practice, your program will likely crash or mysteriously

misbehave if you use an uninitialized pointer:

double* account_pointer; // No initialization

*account_pointer = 1000;

Errors Using Pointers – Uninitialized Pointer Variables

NO!

account_pointer contains an unpredictable value!

Where is the 1000 going?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 There is a special value

that you can use

to indicate a pointer

that doesn’t point anywhere:

NULL

NULL

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 If you define a pointer variable

 and are not ready to initialize it quite yet,
 it is a good idea to set it to NULL.

 You can later test whether the pointer is NULL.

 If it is, don’t use it:

double* account_pointer = NULL; // Will set later

if (account_pointer != NULL) // OK to use

{

 cout << *account_pointer;

}

NULL

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

 Trying to access data through a NULL pointer is still illegal,

and

it will cause your program to crash.

NULL

double* account_pointer = NULL;

cout << *account_pointer;

CRASH!!!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Syntax of Pointers

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Pointer Syntax Examples

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Harry’s Banking Program

#include <iostream>

using namespace std;

int main()

{

 double harrys_account = 0;

 double joint_account = 2000;

 double* account_pointer = &harrys_account;

 *account_pointer = 1000; // Initial deposit

Here is the complete banking program that Harry wrote.

It demonstrates the use of a pointer variable to allow

uniform access to variables.

ch07/accounts.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Harry’s Banking Program

 // Withdraw $100

 *account_pointer = *account_pointer - 100;

 // Print balance

 cout << "Balance: " << *account_pointer

 << endl;

 // Change the pointer value so that the same

 // statements now affect a different account

 account_pointer = &joint_account;

 // Withdraw $100

 *account_pointer = *account_pointer - 100;

 // Print balance

 cout << "Balance: " << *account_pointer

 << endl;

 return 0;

}

ch07/accounts.cpp

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error: Confusing Data And Pointers

 A pointer is a memory address

 – a number that tells where a value is located in memory.

 It is a common error to confuse the pointer

with the variable to which it points.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error: Where’s the *?

double* account_pointer = &joint_account;

account_pointer = 1000;

 The assignment statement does not set the joint

account balance to 1000.

 It sets the pointer variable, account_pointer,

to point to memory address 1000.
ERROR

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

Common Error: Where’s the *?

double* account_pointer = &joint_account;

account_pointer = 1000;

1000

???
joint_account is almost certainly

not located at address 1000!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error: Where’s the *?

 Most compilers will report an error for this kind of error.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Confusing Definitions

 It is legal in C++ to define multiple variables together, like

this:

 int i = 0, j = 1;

 This style is confusing when used with pointers:

 double* p, q;

 The * associates only with the first variable.

That is, p is a double* pointer, and q is a double value.

 To avoid any confusion, it is best to define each pointer

variable separately:

 double* p;

 double* q;

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Pointers and References

 & == *

 What are you asking?

?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Pointers and References

Recall that the & symbol is used for reference parameters:

void withdraw(double& balance, double amount)

{

 if (balance >= amount)

 {

 balance = balance - amount;

 }

}

 a call would be:

 withdraw(harrys_checking, 1000);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Pointers and References

We can accomplish the same thing using pointers:

void withdraw(double* balance, double amount)

{

 if (*balance >= amount)

 {

 *balance = *balance - amount;

 }

}

 but the call will have to be:

 withdraw(&harrys_checking, 1000);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

In C++, there is a deep relationship

between pointers and arrays.

This relationship explains a number of

special properties and limitations of arrays.

Arrays and Pointers

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays and Pointers

 Pointers are particularly useful for

understanding the peculiarities of arrays.

The name of the array denotes

a pointer to the starting element.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays and Pointers

Consider this declaration:

int a[10];

(Assume we have

filled it as shown.)

You can capture the

pointer to the first

element in the array

in a variable:

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays and Pointers

Consider this declaration:

int a[10];

(Assume we have

filled it as shown.)

You can capture the

pointer to the first

element in the array

in a variable:

int* p = a; // Now p points to a[0]

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays and Pointers – Same Use

You can use the array name a as you would a pointer:

These output statements are equivalent:

cout << *a;

cout << a[0];

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Pointer Arithmetic

 Pointer arithmetic allows you to
add an integer to an array name.

 int* p = a;

 p + 3 is a pointer to the array element with index 3

 The expression: *(p + 3)

.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Array/Pointer Duality Law

 The array/pointer duality law states:

 a[n] is identical to *(a + n),

 where a is a pointer into an array

 and n is an integer offset.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Array/Pointer Duality Law

 This law explains why all C++

arrays start with an index of zero.

 The pointer a (or a + 0) points to

the starting element of the array.

 That element must therefore be
a[0].

 You are adding 0 to the

 start of the array, thus

 correctly going nowhere!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Array/Pointer Duality Law

 Now it should be clear why array parameters

are different from other parameter types.

(if not, we’ll show you)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Array/Pointer Duality Law

 Consider this function that computes

the sum of all values in an array:

double sum(double a[], int size)

{

 double total = 0;

 for (int i = 0; i < size; i++)

 {

 total = total + a[i];

 }

 return total;

}

Look at this

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Array/Pointer Duality Law

 Here is a call to the function.

double data[10];

... // Initialize data

double s = sum(data, 10);

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Array/Pointer Duality Law

 After the loop has run
to the point when i is 3:

double sum(double a[], int size)

{

 double total = 0;

 for (int i = 0; i < size; i++)

 {

 total = total + a[i];

 }

 return total;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

The Array/Pointer Duality Law

 The C++ compiler considers
 a to be a pointer, not an array.

 The expression a[i]

 is syntactic sugar
 for *(a + i).

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Syntactic Sugar

Sugar?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Syntactic Sugar

Computer scientists use the term

“syntactic sugar”

to describe a notation that is easy to read for humans

and that masks a complex implementation detail.

Yum!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Syntactic Sugar

Yum!!!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Syntactic Sugar

That masked complex implementation detail:

double sum(double* a, int size)

is how we should define the first parameter

but

double sum(double a[], int size)

looks a lot more like we are passing an array.

 (yummy!)

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Syntactic Sugar

Yummy indeed!

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Arrays and Pointers

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

Watch variable p as this code is executed.

double sum(double* a, int size)

{

 double total = 0;

 double* p = a;

 // p starts at the beginning of the array

 for (int i = 0; i < size; i++)

 {

 total = total + *p;

 // Add the value to which p points

 p++;

 // Advance p to the next array element

 }

 return total;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

Watch variable p as this code is executed.

double sum(double* a, int size)

{

 double total = 0;

 double* p = a;

 // p starts at the beginning of the array

 for (int i = 0; i < size; i++)

 {

 total = total + *p;

 // Add the value to which p points

 p++;

 // Advance p to the next array element

 }

 return total;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

Watch variable p as this code is executed.

double sum(double* a, int size)

{

 double total = 0;

 double* p = a;

 // p starts at the beginning of the array

 for (int i = 0; i < size; i++)

 {

 total = total + *p;

 // Add the value to which p points

 p++;

 // Advance p to the next array element

 }

 return total;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

Add, then move p to the next position by incrementing.

double sum(double* a, int size)

{

 double total = 0;

 double* p = a;

 // p starts at the beginning of the array

 for (int i = 0; i < size; i++)

 {

 total = total + *p;

 // Add the value to which p points

 p++;

 // Advance p to the next array element

 }

 return total;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

Add, then again move p to the next position by incrementing.

double sum(double* a, int size)

{

 double total = 0;

 double* p = a;

 // p starts at the beginning of the array

 for (int i = 0; i < size; i++)

 {

 total = total + *p;

 // Add the value to which p points

 p++;

 // Advance p to the next array element

 }

 return total;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

Add, then move p.

double sum(double* a, int size)

{

 double total = 0;

 double* p = a;

 // p starts at the beginning of the array

 for (int i = 0; i < size; i++)

 {

 total = total + *p;

 // Add the value to which p points

 p++;

 // Advance p to the next array element

 }

 return total;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

Again...

double sum(double* a, int size)

{

 double total = 0;

 double* p = a;

 // p starts at the beginning of the array

 for (int i = 0; i < size; i++)

 {

 total = total + *p;

 // Add the value to which p points

 p++;

 // Advance p to the next array element

 }

 return total;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

And so on until every single position in the array has been added.

double sum(double* a, int size)

{

 double total = 0;

 double* p = a;

 // p starts at the beginning of the array

 for (int i = 0; i < size; i++)

 {

 total = total + *p;

 // Add the value to which p points

 p++;

 // Advance p to the next array element

 }

 return total;

}

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Using a Pointer to Step Through an Array

 It is a tiny bit more efficient to use and increment

a pointer than to access an array element.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Program Clearly, Not Cleverly

 Some programmers take great pride

 in minimizing the number of instructions,

 even if the resulting code is hard to understand.

 while (size-- > 0) // Loop size times

 {

 total = total + *p;

 p++;

 }

 could be written as:

 total = total + *p++;

 Ah, so much better?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Program Clearly, Not Cleverly

 while (size > 0)

 {

 total = total + *p;

 p++;

 size--;

 }

 could be written as:

 while (size-- > 0)

 total = total + *p++;

 Ah, so much better?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Program Clearly, Not Cleverly

 Please do not use this programming style.

 Your job as a programmer is not to dazzle other programmers

with your cleverness,

but to write code that is easy

to understand and maintain.

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error: Returning a Pointer to a Local Variable

What would it mean to

“return an array”

?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error: Returning a Pointer to a Local Variable

 Consider this function that tries to return

a pointer to an array containing two elements,

the first and last values of an array:

double* firstlast(double a[], int size)

{

 double result[2];

 result[0] = a[0];

 result[1] = a[size - 1];

 return result;

}

Local memory is invalid

after the function call

has ended!

What would the value

the caller gets be

pointing to?

C++ for Everyone by Cay Horstmann

Copyright © 2012 by John Wiley & Sons. All rights reserved

Common Error: Returning a Pointer to a Local Variable

 A solution would be to pass in an array to hold the answer:

void firstlast(double a[], int size, double result[])

{

 result[0] = a[0];

 result[1] = a[size - 1];

}

double arr[10] = {…};

double res[2];

firstlast(arr, 10, res);

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

C and C++ Strings, POP QUIZ

“Q: What?”

Really we mean:

“Q: What is this?”

A C string, of course!

(notice the double quotes: “Like this”)

C++ for Everyone by Cay Horstmann

Copyright © 2008 by John Wiley & Sons. All rights reserved

End Chapter Seven: Pointers, Part I

Slides by Evan Gallagher & Nikolay Kirov

