UV

Heaps and Priority Queues

AN

Heaps and Priority Queues

Priority Queue

ADT (§7.1)

A priority queue stores a
collection of items

4 An item is a pair
(key, element)

Main methods of the Priority
Queue ADT

= insertltem(k, o)
inserts an item with key k
and element o

= removeMin()
removes the item with the
smallest key

N

Additional methods

= minKey(k, o)
returns, but does not
remove, the smallest key of
an item

= minElement()
returns, but does not
remove, the element of an
item with smallest key

m Size(), isEmpty()
Applications:

= Standby flyers

= Auctions

= Stock market

Heaps and Priority Queues 2

N

queue can be
arbitrary objects
on which an order
s defined

Two distinct items
In a priority queue
can have the
same key

Total Order Relation

Keys in a priority # Mathematical concept of

total order relation <
= Reflexive property:
X<Xx
= Antisymmetric property:
XSPAPSX=SX=TY
= Transitive property:
XSYAYPSZTI=>XZ]

Heaps and Priority Queues 3

Comparator ADT (§7.1.4) E _j
. G

#® A comparator encapsulates the action of comparing
two objects according to a given total order
relation

A generic priority gueue uses a comparator as a
template argument, to define the comparison
function (<,=,>)

The comparator is external to the keys being

compared. Thus, the same objects can be sorted
in different ways by using different comparators.

When the priority queue needs to compare two
keys, it uses its comparator

Heaps and Priority Queues 4

Using Comparators in C++ B\

=

A comparator cIass_overIoads # To use the comparator,

the *()" operator with a define an object of this type,

comparison function. and invoke it using its “()”
Example: Compare two points operator:

in the plane lexicographically. # Example of usage:

class LexCompare { Point pgz 3, 4. 53

public: Point q(1 7 7.3

int operator()(Point a, Point b) { LeXCompare IeXCompare
if (a.x < b.x) return —1

if (lexCompare(p, q) < 0)

else if (a.x > b.x) return +1 cout << “p less than q”;

else if (a.y < b.y) return -1

else if (a.y > b.y) return +1 else if (IexCompareﬂp, (;l) ==0)
else return 0; cout << "p equals
) ' else if (IexCompare(p,) > O)

). cout << “p greater t an q,

Heaps and Priority Queues 5

Sorting with a

N

We can use a priority
queue to sort a set of
comparable elements

B Insert the elements one
by one with a series of

insertltem(e, e)
operations

B Remove the elements in
sorted order with a series
of removeMin()
operations

The running time of this
sorting method depends on

the priority queue
implementation

S h

Priority Queue (§7.1.2) L}‘a‘"

Algorithm PQO-Sor(S, C)
Input sequence §, comparator C
for the elements of S
Output sequence S sorted 1n
increasing order according to C

P < priority queue with
comparator C

while !S.isEmpty ()
e < S.remove (8. first ())
P.insertltem(e, e)

while !P.isEmpty()

e < P.minElement()
P.removeMin()

S.insertLast(e)

Heaps and Priority Queues 6

N

Implementation with an
unsorted list
€y

@O—0B—02—0

Q) ¢
Performance:

= insertltem takes O(1) time
since we can insert the item
at the beginning or end of
the sequence

= removeMin, minKey and
minElement take O(n) time
since we have to traverse
the entire sequence to find
the smallest key

Sequence-based Priority Queue

Implementation with a
sorted list

O—2—0B—®

W O W
Performance:

m insertltem takes O(n) time
since we have to find the
place where to insert the
item

= removeMin, minKey and
minElement take O(1) time
since the smallest key is at
the beginning of the
sequence

®

Heaps and Priority Queues 7

Selection-Sort

N

Selection-sort is the variation of PQ-sort where the
priority queue is implemented with an unsorted

seqguence @ @ @ @ @

Running time of Selection-sort:

B Inserting the elements into the priority queue with »
insertltem operations takes O(n) time

B Removing the elements in sorted order from the priority
queue with n removeMin operations takes time
proportional to

1+2+..+n
Selection-sort runs in O(n?) time

Heaps and Priority Queues 8

: Q\ "
Insertion-Sort \ &
b 9

| g
Insertion-sort is the variation of PQ-sort where the
priority queue is implemented with a sorted

sequence
O—0O20—0B—©®-0

Running time of Insertion-sort:

B Inserting the elements into the priority queue with n
insertltem operations takes time proportional to

l1+2+...+n

B Removing the elements in sorted order from the priority
queue with a series of n removeMin operations takes
O(n) time

Insertion-sort runs in O(n?) time

Heaps and Priority Queues 9

What is a heap? (§7.3.1)

® A hgap IS a bina_lry tree # The last node of a heap
storing keys at its internal is the rightmost internal
nodes and satisfying the node of depth # — 1

following properties:

= Heap-Order: for every
internal node v other than
the root,
key(v) > key(parent(v))

s Complete Binary Tree: let A
be the height of the heap

e fori=0,...,h—1, there are
2i nodes of depth i

+ at depth n - 1, the internal
nodes are to the left of the
external nodes last node

Heaps and Priority Queues 10

Height of a Heap

N

Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)

= Let 4 be the height of a heap storing » keys

= Since there are 2i keys at depth i =0, ..., h — 2 and at least one key
atdepthh—-1,wehaven>1+2+4+...+22 +1

m Thus, n>2"1,ie,h<logn+1

depth keys
0 s
1 9 ettt et et
h=) ki ———

Heaps and Priority Queues 11

N

Heaps and Priority Queues

We can use a heap to implement a priority queue

#® We store a (key, element) item at each internal node
#® We keep track of the position of the last node

For simplicity, we show only the keys in the pictures

[(2, Sue)]

[(6, Mark)]

[(9, 3eff) |

Heaps and Priority Queues 12

N

Insertion into a
Heap (§7.3.2)

Method insertItem of the
priority queue ADT
corresponds to the
insertion of a key k to
the heap

The insertion algorithm
consists of three steps

= Find the insertion node z
(the new last node)

m Store k at z and expand z
into an internal node

= Restore the heap-order

property (discussed next)

Heaps and Priority Queues

13

N

Upheap

&

&

After the insertion of a new key &, the heap-order property may be
violated

Algorithm upheap restores the heap-order property by swapping &
along an upward path from the insertion node

Upheap terminates when the key & reaches the root or a node
whose parent has a key smaller than or equal to &

Since a heap has height O(log n), upheap runs in O(log n) time

Heaps and Priority Queues 14

Removal from a Heap (§7.3.2)

N

Method removeMin of
the priority queue ADT
corresponds to the
removal of the root key
from the heap

The removal algorithm
consists of three steps

= Replace the root key with
the key of the last node w

= Compress w and its
children into a leaf

= Restore the heap-order
property (discussed next)

Heaps and Priority Queues

15

N

Downheap

After replacing the root key with the key k of the last node, the
heap-order property may be violated

Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root

Upheap terminates when key k reaches a leaf or a node whose

children have keys greater than or equal to &
Since a heap has height O(log n), downheap runs in O(log n) time

Heaps and Priority Queues 16

N

Updating the Last Node

The insertion node can be found by traversing a path of O(log n)
nodes

= Go up until a left child or the root is reached
= If a left child is reached, go to the right child
= Go down left until a leaf is reached

Similar algorithm for updating the last node after a removal

o ———
_— ~ o~
—_— —~
—_—
—

~
-
-
-~
~

0 i A e e A e A e A e B e
Heaps and Priority Queues 17

N

Consider a priority
queue with » items
implemented by means
of a heap

m the space used is O(n)

= methods insertltem and
removeMin take O(log n)
time

= methods size, isEmpty,
minKey, and minElement
take time 0O(1) time

Heap-Sort (§7.3.4)

Using a heap-based
priority queue, we can
sort a sequence of n
elements in O(n log n)
time

The resulting algorithm
is called heap-sort

Heap-sort is much
faster than quadratic
sorting algorithms, such
as insertion-sort and
selection-sort

Heaps and Priority Queues 18

Vector-based Heap

Implementation (§7.3.3)

N

®

® @& S e & @

We can represent a heap with n
keys by means of a vector of
length n + 1
For the node at rank i

n the left child is at rank 2i

» the right child is at rank 2i + 1
Links between nodes are not
explicitly stored

The leaves are not represented

The cell of at rank 0 is not used
Operation insertltem corresponds

to inserting at rank n + 1 O 1 2 3 4 5

Operation removeMin corresponds
to removing at rank n

Yields in-place heap-sort

Heaps and Priority Queues 19

N

Merging Two Heaps

We are given two two
heaps and a key &

We create a new heap
with the root node
storing k and with the

two heaps as subtrees

We perform downheap
to restore the heap-
order property

Heaps and Priority Queues

N

Bottom-up Heap
Construction (§7.3.5)

We can construct a heap
storing n given keys in
using a bottom-up hi_]

construction with log n
phases

In phase i, pairs of
heaps with 2:-1 keys are
merged into heaps with
2i+1-1 keys

Heaps and Priority Queues

21

N

e —— _——
— — _——
—_— T m——
—_— —_—
—_— —_——
—_— —_—

/\/

-—

/\ /\ /\ /\ /\ /\ /\ /\

AHBLAR AN

Heaps and Priority Queues 22

N

Example (contd.)

)

Heaps and Priority Queues

N

Example (contd.)

14

Heaps and Priority Queues 24

) Example (end)

Heaps and Priority Queues 25

Analysis

N
\J

We visualize the worst-case time of a downheap with a proxy path
that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)

Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)

Thus, bottom-up heap construction runs in O(n) time

Bottom-up heap construction is faster than » successive insertions
and speeds up the first phase of heap-sort

~ —
o~
-

/// 7
L) / e \ ’ JORVIOI®
L1 L I L] I [] I [] I [] I [] I B
Heaps and Priority Queues 26

	Heaps and Priority Queues
	Priority Queue ADT (§7.1)
	Total Order Relation
	Comparator ADT (§7.1.4)
	Using Comparators in C++
	Sorting with a Priority Queue (§7.1.2)
	Sequence-based Priority Queue
	Selection-Sort
	Insertion-Sort
	What is a heap? (§7.3.1)
	Height of a Heap
	Heaps and Priority Queues
	Insertion into a Heap (§7.3.2)
	Upheap
	Removal from a Heap (§7.3.2)
	Downheap
	Updating the Last Node
	Heap-Sort (§7.3.4)
	Vector-based Heap Implementation (§7.3.3)
	Merging Two Heaps
	Bottom-up Heap Construction (§7.3.5)
	Example
	Example (contd.)
	Example (contd.)
	Example (end)
	Analysis

