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Priority Queue

ADT (§7.1)

# A priority queue stores a
collection of items

4 An item is a pair
(key, element)

# Main methods of the Priority
Queue ADT

= insertltem(k, o)
inserts an item with key k
and element o

= removeMin()
removes the item with the
smallest key

N

# Additional methods

= minKey(k, o)
returns, but does not
remove, the smallest key of
an item

= minElement()
returns, but does not
remove, the element of an
item with smallest key

m Size(), isEmpty()
# Applications:

= Standby flyers

= Auctions

= Stock market
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queue can be
arbitrary objects
on which an order
s defined

# Two distinct items
In a priority queue
can have the
same key

Total Order Relation

# Keys in a priority # Mathematical concept of

total order relation <
= Reflexive property:
X<Xx
= Antisymmetric property:
XSPAPSX=SX=TY
= Transitive property:
XSYAYPSZTI=>XZ]
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Comparator ADT (§7.1.4) E \_j
. G

#® A comparator encapsulates the action of comparing
two objects according to a given total order
relation

# A generic priority gueue uses a comparator as a
template argument, to define the comparison
function (<,=,>)

# The comparator is external to the keys being

compared. Thus, the same objects can be sorted
in different ways by using different comparators.

# When the priority queue needs to compare two
keys, it uses its comparator
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Using Comparators in C++ B\

=

# A comparator cIass_overIoads # To use the comparator,

the *()" operator with a define an object of this type,

comparison function. and invoke it using its “()”
# Example: Compare two points operator:

in the plane lexicographically. # Example of usage:

class LexCompare { Point pgz 3, 4. 53

public: Point q(1 7 7.3

int operator()(Point a, Point b) { LeXCompare IeXCompare
if (a.x < b.x) return —1

if (lexCompare(p, q) < 0)

else if (a.x > b.x) return +1 cout << “p less than q”;

else if (a.y < b.y) return -1

else if (a.y > b.y) return +1 else if (IexCompareﬂp, (;l) ==0)
else return 0; cout << "p equals
) ' else if (IexCompare(p, ) > O)

). cout << “p greater t an q,
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Sorting with a

N

# We can use a priority
queue to sort a set of
comparable elements

B Insert the elements one
by one with a series of

insertltem(e, e)
operations

B Remove the elements in
sorted order with a series
of removeMin()
operations

# The running time of this
sorting method depends on

the priority queue
implementation

S h

Priority Queue (§7.1.2) L}‘a‘"

Algorithm PQO-Sor(S, C)
Input sequence §, comparator C
for the elements of S
Output sequence S sorted 1n
increasing order according to C

P < priority queue with
comparator C

while !S.isEmpty ()
e < S.remove (8. first ())
P.insertltem(e, e)

while !P.isEmpty()

e < P.minElement()
P.removeMin()

S.insertLast(e)
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# Implementation with an
unsorted list
€y

@O—0B—02—0

Q) ¢
# Performance:

= insertltem takes O(1) time
since we can insert the item
at the beginning or end of
the sequence

= removeMin, minKey and
minElement take O(n) time
since we have to traverse
the entire sequence to find
the smallest key

Sequence-based Priority Queue

# Implementation with a
sorted list

O—2—0B—®

W O W
# Performance:

m insertltem takes O(n) time
since we have to find the
place where to insert the
item

= removeMin, minKey and
minElement take O(1) time
since the smallest key is at
the beginning of the
sequence

®
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Selection-Sort

N

# Selection-sort is the variation of PQ-sort where the
priority queue is implemented with an unsorted

seqguence @ @ @ @ @

# Running time of Selection-sort:

B Inserting the elements into the priority queue with »
insertltem operations takes O(n) time

B Removing the elements in sorted order from the priority
queue with n removeMin operations takes time
proportional to

1+2+..+n
# Selection-sort runs in O(n?) time
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Insertion-Sort \ &
b 9

| g
# Insertion-sort is the variation of PQ-sort where the
priority queue is implemented with a sorted

sequence
O—0O20—0B—©®-0

# Running time of Insertion-sort:

B Inserting the elements into the priority queue with n
insertltem operations takes time proportional to

l1+2+...+n

B Removing the elements in sorted order from the priority
queue with a series of n removeMin operations takes
O(n) time

# Insertion-sort runs in O(n?) time
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What is a heap? (§7.3.1)

® A hgap IS a bina_lry tree # The last node of a heap
storing keys at its internal is the rightmost internal
nodes and satisfying the node of depth # — 1

following properties:

= Heap-Order: for every
internal node v other than
the root,
key(v) > key(parent(v))

s Complete Binary Tree: let A
be the height of the heap

e fori=0,...,h—1, there are
2i nodes of depth i

+ at depth n - 1, the internal
nodes are to the left of the
external nodes last node
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Height of a Heap

N

# Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)

= Let 4 be the height of a heap storing » keys

= Since there are 2i keys at depth i =0, ..., h — 2 and at least one key
atdepthh—-1,wehaven>1+2+4+...+22 +1

m Thus, n>2"1,ie,h<logn+1

depth keys
0 s
1 9 ettt et et
h=) ki ———
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Heaps and Priority Queues

# We can use a heap to implement a priority queue

#® We store a (key, element) item at each internal node
#® We keep track of the position of the last node

# For simplicity, we show only the keys in the pictures

[ (2, Sue) ]

[ (6, Mark) ]

[ (9, 3eff) |
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Insertion into a
Heap (§7.3.2)

# Method insertItem of the
priority queue ADT
corresponds to the
insertion of a key k to
the heap

# The insertion algorithm
consists of three steps

= Find the insertion node z
(the new last node)

m Store k at z and expand z
into an internal node

= Restore the heap-order

property (discussed next)

Heaps and Priority Queues
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Upheap

&

&

After the insertion of a new key &, the heap-order property may be
violated

Algorithm upheap restores the heap-order property by swapping &
along an upward path from the insertion node

Upheap terminates when the key & reaches the root or a node
whose parent has a key smaller than or equal to &

Since a heap has height O(log n), upheap runs in O(log n) time
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Removal from a Heap (§7.3.2)

N

# Method removeMin of
the priority queue ADT
corresponds to the
removal of the root key
from the heap

# The removal algorithm
consists of three steps

= Replace the root key with
the key of the last node w

= Compress w and its
children into a leaf

= Restore the heap-order
property (discussed next)

Heaps and Priority Queues
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Downheap

# After replacing the root key with the key k of the last node, the
heap-order property may be violated

# Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root

# Upheap terminates when key k reaches a leaf or a node whose

children have keys greater than or equal to &
# Since a heap has height O(log n), downheap runs in O(log n) time
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Updating the Last Node

# The insertion node can be found by traversing a path of O(log n)
nodes

= Go up until a left child or the root is reached
= If a left child is reached, go to the right child
= Go down left until a leaf is reached

# Similar algorithm for updating the last node after a removal
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# Consider a priority
queue with » items
implemented by means
of a heap

m the space used is O(n)

= methods insertltem and
removeMin take O(log n)
time

= methods size, isEmpty,
minKey, and minElement
take time 0O(1) time

Heap-Sort (§7.3.4)

# Using a heap-based
priority queue, we can
sort a sequence of n
elements in O(n log n)
time

# The resulting algorithm
is called heap-sort

# Heap-sort is much
faster than quadratic
sorting algorithms, such
as insertion-sort and
selection-sort
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Vector-based Heap

Implementation (§7.3.3)

N

®

® @& S e & @

We can represent a heap with n
keys by means of a vector of
length n + 1
For the node at rank i

n the left child is at rank 2i

» the right child is at rank 2i + 1
Links between nodes are not
explicitly stored

The leaves are not represented

The cell of at rank 0 is not used
Operation insertltem corresponds

to inserting at rank n + 1 O 1 2 3 4 5

Operation removeMin corresponds
to removing at rank n

Yields in-place heap-sort
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Merging Two Heaps

# We are given two two
heaps and a key &

# We create a new heap
with the root node
storing k and with the

two heaps as subtrees

# We perform downheap
to restore the heap-
order property
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Bottom-up Heap
Construction (§7.3.5)

# We can construct a heap
storing n given keys in
using a bottom-up hi_]

construction with log n
phases

# In phase i, pairs of
heaps with 2:-1 keys are
merged into heaps with
2i+1-1 keys

Heaps and Priority Queues
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Example (contd.)

)
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Example (contd.)

14
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) Example (end)
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Analysis

N
\J

# We visualize the worst-case time of a downheap with a proxy path
that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)

# Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)

# Thus, bottom-up heap construction runs in O(n) time

# Bottom-up heap construction is faster than » successive insertions
and speeds up the first phase of heap-sort
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