
C h a p t e r 3
Objects

� To become familiar with objects

� To learn about the properties of several sample classes that were designed
for this book

� To be able to construct objects and supply initial values

� To understand member functions and the dot notation

� To be able to modify and query the state of an object through member
functions

� To write simple graphics programs containing points, lines, circles, and text
(optional)

C H A P T E R G O A L S

You have learned about the basic
data types of C++: numbers and
strings. While it is possible to write
interesting programs using only num-
bers and strings, most useful programs
need to manipulate data items that are
more complex and more closely repre-
sent entities in the real world. Exam-
ples of these data items are employee
records or graphical shapes.

The C++ language is ideally suited
for designing and manipulating such

data items, or, as they are usually called,
objects. It requires a certain degree of
technical mastery to design new object
types, but it is quite easy to manipulate
object types that have been designed by
others. Therefore, you will first learn
how to use objects that were specifically
designed for use with this textbook. In
Chapter 6 you will learn how to define
these and other objects. Some of the
most interesting data structures that we
consider are from the realm of

ccc_ch03.fm Page 79 Wednesday, May 22, 2002 5:41 PM

80 CHAPTER 3 Objects

graphics. In this chapter you will learn how to use objects that let you draw
graphical shapes on the computer screen.

To keep programming simple, we introduce only a few building blocks.
You will find that the ability to draw simple graphics makes programming
much more fun. However, the use of the graphics library is entirely
optional. The remainder of this book does not depend on graphics.

An object is a value that can be created, stored, and manipulated in a programming lan-
guage. In that sense, the string "Hello" is an object. You can create it simply by using the
C++ string notation "Hello". You can store it in a variable like this:

string greeting = "Hello";

You can manipulate it, for example, by computing a substring:
cout << greeting.substr(0, 4);

This particular manipulation does not affect the object. After the substring is computed,
the original string is unchanged. You will see object manipulations that do change
objects later in this chapter.

In C++ every object must belong to a class. A class is a data type, just like int or dou-
ble. However, classes are programmer-defined, whereas int and double are defined by the
designers of the C++ language. At this point, you won’t yet learn how to define your own
classes, so the distinction between the built-in types and programmer-defined class types
is not yet important.

C H A P T E R C O N T E N T S

3.1 Constructing Objects 80
Syntax 3.1: Object Construction 81
Syntax 3.2: Object Variable Definition 82
3.2 Using Objects 82
Common Error 3.1: Trying to Call a Member

Function without a Variable 86
Productivity Hint 3.1: Keyboard Shortcuts for

Mouse Operations 86
3.3 Real-Life Objects 87
Productivity Hint 3.2: Using the Command Line

Effectively 89
Random Fact 3.1: Mainframes—When Dinosaurs

Ruled the Earth 89
3.4 Displaying Graphical Shapes 91

3.5 Graphics Structures 92
Productivity Hint 3.3: Think of Points as Objects,

Not Pairs of Numbers 96
Random Fact 3.2: Computer Graphics 96
3.6 Choosing a Coordinate System 98
Productivity Hint 3.4: Choose a Convenient

Coordinate System 101
3.7 Getting Input from the Graphics Window 102
3.8 Comparing Visual and Numerical

Information 103
Quality Tip 3.1: Calculate Sample Data

Manually 106
Random Fact 3.3: Computer Networks and the

Internet 107

3.1 Constructing Objects

ccc_ch03.fm Page 80 Wednesday, May 22, 2002 5:41 PM

3.1 Constructing Objects 81

In this chapter you will learn to work with the class Time, the class Employee, and four
classes that represent graphical shapes. These classes are not part of standard C++; they
have been created for use in this book.

To use the Time class, you must include the file ccc_time.h. Unlike the iostream or
cmath headers, this file is not part of the standard C++ headers. Instead, the Time class is
supplied with this book to illustrate simple objects. Because the ccc_time.h file is not a
system header, you do not use angle brackets < > in the #include directive; instead, you
use quotation marks:

#include "ccc_time.h"

The CCC prefix is another reminder that this header file is specific to the book; CCC
stands for Computing Concepts with C++ Essentials. The online documentation of the
code library that accompanies this book gives more instructions on how to add the code
for the CCC objects to your program.

Suppose you want to know how many seconds will elapse between now and mid-
night. This sounds like a pain to compute by hand. However, the Time class makes the
job easy. You will see how, in this section and the next. First, you will learn how to specify
an object of type Time. The end of the day is 11:59 P.M. and 59 seconds. Here is a Time
object representing that time:

Time(23, 59, 59)

You specify a Time object by giving three values: hours, minutes, and seconds. The hours
are given in “military time”: between 0 and 23 hours.

When a Time object is specified from three integer values such as 23, 59, 59, we say
that the object is constructed from these values, and the values used in the construction are
the construction parameters. In general, an object value is constructed as shown in Syntax
3.1.

You should think of a time object as an entity that is very similar to a number such as
7.5 or a string such as "Hello". Just as floating-point values can be stored in double vari-
ables, Time objects can be stored in Time variables:

Time day_end = Time(23, 59, 59);

Think of this as the analog of
double interest_rate = 7.5;

or
string greeting = "Hello";

There is a shorthand for this very common situation (See Syntax 3.2).
Time day_end(23, 59, 59);

Syntax 3.1 : Object Construction
Class_name(construction parameters)

Example: Time(19, 0, 0)

Purpose: Construct a new object for use in an expression.

ccc_ch03.fm Page 81 Wednesday, May 22, 2002 5:41 PM

82 CHAPTER 3 Objects

This defines a variable day_end that is initialized to the Time object Time(23,59,59). (See
Figure 1.)

Many classes have more than one construction mechanism. For example, there are
two methods for constructing times: by specifying hours, minutes, and seconds, and by
specifying no parameters at all. The expression

Time()

creates an object representing the current time, that is, the time when the object is con-
structed. Making an object with no construction parameter is called default construction.

Of course, you can store a default Time object in a variable:
Time now = Time();

The shorthand notation for using default construction is slightly inconsistent:
Time now; /* OK. This defines a variable and invokes the default constructor. */

and not
Time now(); /* NO! This does not define a variable */

For strange historical reasons, you cannot use () when defining a variable with default
construction.

Once you have a Time variable, what can you do with it? Here is one useful operation.
You can add a certain number of seconds to the time:

wake_up.add_seconds(1000);

Afterwards, the object in the variable wake_up is changed. It is no longer the time value
assigned when the object was constructed, but a time object representing a time that is
exactly 1,000 seconds from the time previously stored in wake_up. (See Figure 2.)

Whenever you apply a function (such as add_seconds) to an object variable (such as
wake_up), you use the same dot notation that we already used for certain string functions:

int n = greeting.length();
cout << greeting.substr(0, 4);

Figure 1

A Time Object

Syntax 3.2 : Object Variable Definition
Class_name variable_name(construction parameters);

Example: Time homework_due(19, 0, 0);

Purpose: Define a new object variable and supply parameter values for initialization.

day_end =

23:59:59

Time

3.2 Using Objects

ccc_ch03.fm Page 82 Wednesday, May 22, 2002 5:41 PM

3.2 Using Objects 83

A function that is applied to an object with the dot notation is called a member function
in C++.

Now that you’ve seen how to change the state of a time object, how can you find out
the current time stored in the object? You have to ask it. There are three member func-
tions for this purpose, called

get_seconds()
get_minutes()
get_hours()

They too are applied to objects using the dot notation. (See Figure 3.)

File time1.cpp
1 #include <iostream>
2
3 using namespace std;
4
5 #include "ccc_time.h"
6
7 int main()
8 {
9 Time wake_up(7, 0, 0);

10 wake_up.add_seconds(1000); /* a thousand seconds later */
11 cout << wake_up.get_hours()
12 << ":" << wake_up.get_minutes()
13 << ":" << wake_up.get_seconds() << "\n";
14
15 return 0;
16 }

Figure 2

Changing the State of an Object

Figure 3

Querying the State of an Object

wake_up =

7:00:00

Time

wake_up =

7:16:40

Time

wake_up.add_seconds(1000);

Afterwards:

wake_up =

7:16:40

Time

wake_up.get_hours()

7

ccc_ch03.fm Page 83 Wednesday, May 22, 2002 5:41 PM

84 CHAPTER 3 Objects

This program displays
7:16:40

Since you can get the hours of a time, it seems natural to suggest that you can set it as
well:

homework_due.set_hours(2); /* No! Not a supported member function */
Time objects do not support this member function. There is a good reason, of course. Not
all hour values make sense. For example,

homework_due.set_hours(9999); /* Doesn’t make sense */
Of course, one could try to come up with some meaning for such a call, but the author of
the Time class decided simply not to supply these member functions. Whenever you use
an object, you need to find out which member functions are supplied; other operations,
however useful they may be, are simply not possible.

The Time class has only one member function that can modify Time objects:
add_seconds. For example, to advance a time by one hour, you can use

const int SECONDS_PER_HOUR = 60 * 60;
homework_due.add_seconds(SECONDS_PER_HOUR);

You can move the time back by an hour:
homework_due.add_seconds(-SECONDS_PER_HOUR);

If you are entirely unhappy with the current object stored in a variable, you can overwrite
it with another one:

homework_due = Time(23, 59, 59);

Figure 4 shows this replacement.
There is one final member function that a time variable can carry out: It can figure

out the number of seconds between itself and another time. For example, the following

Figure 4

Replacing an Object with Another

homework_due =

19:00:00

Time

homework_due =

23:59:59

Time

homework_due = Time(23, 59, 59);

23:59:59

Time

ccc_ch03.fm Page 84 Wednesday, May 22, 2002 5:41 PM

3.2 Using Objects 85

program computes the number of seconds between the current time and the last second
of the day.

File time2.cpp
1 #include <iostream>
2
3 using namespace std;
4
5 #include "ccc_time.h"
6
7 int main()
8 {
9 Time now;

10 Time day_end(23, 59, 59);
11 int seconds_left = day_end.seconds_from(now);
12
13 cout << "There are "
14 << seconds_left
15 << " seconds left in this day.\n";
16
17 return 0;
18 }

To summarize, in C++ objects are constructed by writing the class name, followed by
construction parameters in parentheses. There is a shortcut notation for initializing an
object variable. Member functions are applied to objects and object variables with the dot
notation. The functions of the Time class are listed in Table 1.

Table 1

Member Functions of the Time Class

Name Purpose

Time() Constructs the current time

Time(h, m, s) Constructs the time with hours h,
minutes m, and seconds s

t.get_seconds() Returns the seconds value of t

t.get_minutes() Returns the minutes value of t

t.get_hours() Returns the hours value of t

t.add_seconds(n) Changes t to move by n seconds

t.seconds_from(t2) Computes the number of seconds between
t and t2

ccc_ch03.fm Page 85 Wednesday, May 22, 2002 5:41 PM

86 CHAPTER 3 Objects

Trying to Call a Member Function without a Variable

Suppose your code contains the instruction

add_seconds(30); /* Error */
The compiler will not know which time to advance. You need to supply a variable of type
Time:

Time liftoff(19, 0, 0);
liftoff.add_seconds(30);

Keyboard Shortcuts for Mouse Operations

Programmers spend a lot of time with the keyboard and the mouse. Programs and documen-
tation are many pages long and require a lot of typing. The constant switching between the
editor, compiler, and debugger takes up quite a few mouse clicks. The designers of programs
such as a C++ integrated development environment have added some features to make your
work easier, but it is up to you to discover them.

Just about every program has a user interface with menus and dialog boxes. Click on a
menu and click on a submenu to select a task. Click on each field in a dialog box, fill in the
requested answer, and click OK. These are great user interfaces for the beginner, because they
are easy to master, but they are terrible user interfaces for the regular user. The constant
switching between the keyboard and the mouse slows you down. You need to move a hand off
the keyboard, locate the mouse, move the mouse, click the mouse, and move the hand back
onto the keyboard. For that reason, most user interfaces have keyboard shortcuts: combinations
of keystrokes that allow you to achieve the same tasks without having to switch to the mouse
at all.

Many common applications use the following conventions:

� Pressing the Alt key plus the underlined key in a menu (as in “File”) pulls down that
menu. Inside a menu, just provide the underlined character in the submenu to activate
it. For example, Alt+F O selects “File” “Open”. Once your fingers know about this
combination, you can open files faster than the fastest mouse artist.

� Inside dialog boxes, the Tab key is important; it moves from one option to the next.
The arrow keys move within an option. The Enter key accepts all the options selected
in the dialog box, and the escape key (Esc) cancels any changes.

� In a program with multiple windows, Ctrl+Tab toggles through the windows managed
by that program, for example between the source and error window.

� Alt+Tab toggles between applications, letting you quickly toggle between, for example,
the compiler and a folder explorer program.

3.1Common Error�

�

�

�

3.1Productivity Hint�

�

�

�

�

�

�

�

�

�

ccc_ch03.fm Page 86 Wednesday, May 22, 2002 5:41 PM

3.3 Real-Life Objects 87

� Hold down the Shift key and press the arrow keys to highlight text. Then use Ctrl+X
to cut the text, Ctrl+C to copy it, and Ctrl+V to paste it. These keys are easy to remem-
ber. The V looks like an insertion mark that an editor would use to insert text. The X
should remind you of crossing out text. The C is just the first letter in “Copy”. (OK, so
it is also the first letter in “Cut”—no mnemonic rule is perfect.) You find these
reminders in the Edit menu.

Of course, the mouse has its use in text processing: to locate or select text that is on the same
screen but far away from the cursor.

Take a little bit of time to learn about the keyboard shortcuts that the designers of your
programs provided for you; the time investment will be repaid many times during your pro-
gramming career. When you blaze through your work in the computer lab with keyboard
shortcuts, you may find yourself surrounded by amazed onlookers who whisper, “I didn’t
know you could do that”.

One reason for the popularity of object-oriented programming is that it is easy to model
entities from real life in computer programs, making programs easy to understand and
modify. Consider the following program:

File employee.cpp
1 #include <iostream>
2
3 using namespace std;
4
5 #include "ccc_empl.h"
6
7 int main()
8 {
9 Employee harry("Hacker, Harry", 45000.00);

10
11 double new_salary = harry.get_salary() + 3000;
12 harry.set_salary(new_salary);
13
14 cout << "Name: " << harry.get_name() << "\n";
15 cout << "Salary: " << harry.get_salary() << "\n";
16
17 return 0;
18 }

This program creates a variable harry and initializes it with an object of type Employee.
There are two construction parameters: the name of the employee and the starting salary.

We then give Harry a $3,000 raise (see Figure 5). We first find his current salary with
the get_salary member function. We determine the new salary by adding $3,000. We
use the set_salary member function to set the new salary.

�

�

�

�

�

3.3 Real-Life Objects

ccc_ch03.fm Page 87 Wednesday, May 22, 2002 5:41 PM

88 CHAPTER 3 Objects

Finally, we print out the name and salary number of the employee object. We use the
get_name and get_salary member functions to get the name and salary.

As you can see, this program is easy to read because it carries out its computations
with meaningful entities, namely employee objects.

Note that you can change the salary of an employee with the set_salary member
function. However, you cannot change the name of an Employee object.

This Employee class, whose functions are listed in Table 2, is not very realistic. In real
data-processing programs, employees also have ID numbers, addresses, job titles, and so
on. To keep the sample programs in this book simple, this class has been stripped down
to the most basic properties of employees. You need to include the header file
ccc_empl.h in all programs that use the Employee class.

Figure 5

An Employee Object

Table 2

Member Functions of the Employee Class

harry =

Hacker, Harry
$45,000

Employee

harry =

Hacker, Harry
$48,000

Employee

new_salary = harry.get_salary() + 3000;

harry.set_salary(new_salary);

new_salary = 48000

45000

Name Purpose

Employee(n, s) Constructs an employee with name n and
salary s

e.get_name() Returns the name of e

e.get_salary() Returns the salary of e

e.set_salary(s) Sets salary of e to s

ccc_ch03.fm Page 88 Wednesday, May 22, 2002 5:41 PM

3.3 Real-Life Objects 89

Using the Command Line Effectively

If your programming environment allows you to accomplish all routine tasks with menus and
dialog boxes, you can skip this note. However, if you need to invoke the editor, the compiler,
the linker, and the program manually to test, then it is well worth learning about command
line editing.

Most operating systems (UNIX, Macintosh OS X, Windows) have a command line inter-
face to interact with the computer. (In Windows, you can use the DOS command line inter-
face by double-clicking the “Command Prompt” icon.) You launch commands at a prompt.
The command is executed, and upon completion you get another prompt. Most professional
programmers use the command line interface for repetitive tasks because it is much faster to
type commands than to navigate windows and buttons.

When you develop a program, you find yourself executing the same commands over and
over. Wouldn’t it be nice if you didn’t have to type beastly commands like

g++ -o myprog myprog.cpp

more than once? Or if you could fix a mistake rather than having to retype the command in
its entirety? Many command line interfaces have an option to do just that, but they don’t
always make it obvious. With some versions of Windows, you need to install a program
called DOSKEY. If you use UNIX, try to get the bash or tcsh shell installed for you—ask a
lab assistant or system administrator to help you with the setup. With the proper setup, the
up arrow key ↑ is redefined to cycle through your old commands. You can edit lines with the
left and right arrow keys. You can also perform command completion. For example, to reissue
the same gcc command, type !gcc (UNIX) or gcc and press F8 (Windows).

Mainframes—When Dinosaurs Ruled the Earth

When the International Business Machines Corporation, a successful manufacturer of
punch-card equipment for tabulating data, first turned its attention to designing computers
in the early 1950s, its planners assumed that there was a market for perhaps 50 such devices,
for installation by the government, the military, and a few of the country’s largest corpora-
tions. Instead, they sold about 1,500 machines of their System 650 model and went on to
build and sell more powerful computers.

The so-called mainframe computers of the fifties, sixties, and seventies were huge. They
filled up a whole room, which had to be climate-controlled to protect the delicate equipment
(see Figure 6). Today, because of miniaturization technology, even mainframes are getting
smaller, but they are still very expensive. (At the time of this writing, the cost for a midrange
IBM 3090 is approximately 4 million dollars.)

These huge and expensive systems were an immediate success when they first appeared,
because they replaced many roomfuls of even more expensive employees, who had previously
performed the tasks by hand. Few of these computers do any exciting computations. They

3.2Productivity Hint�

�

�

�

�

�

�

�

3.1Random Fact�

�

�

�

�

�

ccc_ch03.fm Page 89 Wednesday, May 22, 2002 5:41 PM

90 CHAPTER 3 Objects

keep mundane information, such as billing records or airline reservations; the key is that they
store lots of information.

IBM was not the first company to build mainframe computers; that honor belongs to the
Univac Corporation. However, IBM soon became the major player, partially because of tech-
nical excellence and attention to customer needs, and partially because it exploited its
strengths and structured its products and services in a way that made it difficult for customers
to mix IBM products with those of other vendors. In the sixties its competitors, the so-called
“Seven Dwarfs”—GE, RCA, Univac, Honeywell, Burroughs, Control Data, and NCR—fell
on hard times. Some went out of the computer business altogether, while others tried unsuc-
cessfully to combine their strengths by merging their computer operations. It was generally
predicted that they would all eventually fail. It was in this atmosphere that the U.S. govern-
ment brought an antitrust suit against IBM in 1969. The suit went to trial in 1975 and
dragged on until 1982, when the Reagan Administration abandoned it, declaring it “without
merit”.

Of course, by then the computing landscape had changed completely. Just as the dino-
saurs gave way to smaller, nimbler creatures, three new waves of computers had appeared: the
minicomputers, workstations, and microcomputers, all engineered by new companies, not the
Seven Dwarfs. Today, the importance of mainframes in the marketplace has diminished, and
IBM, while still a large and resourceful company, no longer dominates the computer market.

Figure 6

A Mainframe Computer

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ccc_ch03.fm Page 90 Wednesday, May 22, 2002 5:41 PM

3.4 Displaying Graphical Shapes 91

Mainframes are still in use today for two reasons. They excel at handling large data vol-
umes and, more importantly, the programs that control the business data have been refined
over the last 20 or more years, fixing one problem at a time. Moving these programs to less
expensive computers, with different languages and operating systems, is difficult and error-
prone. Sun Microsystems, a leading manufacturer of workstations, was eager to prove that its
mainframe system could be “downsized” to its own equipment. Sun eventually succeeded, but
it took over five years—far longer than it expected.

In the remainder of this chapter you will learn how to use a number of useful classes to
render simple graphics. The graphics classes will provide a basis for interesting program-
ming examples. This material is optional, and you can safely skip it if you are not inter-
ested in writing programs that draw graphical shapes.

There are two kinds of C++ programs that you will write in this course: console appli-
cations and graphics applications. Console applications read input from the keyboard
(through cin) and display text output on the screen (through cout). Graphics programs
read keystrokes and mouse clicks, and they display graphical shapes such as lines and cir-
cles, through a window object called cwin.

You already know how to write console programs. You include the header file
iostream and use the >> and << operators. To activate graphics for your programs, you
must include the header file ccc_win.h into your program. Moreover, you need to supply
the function ccc_win_main instead of main as the entry point to your program.

Unlike the iostream library, which is available on all C++ systems, this graphics
library was created for use in this textbook. As with the Time and Employee classes, you
need to add the code for the graphics objects to your programs. The online documenta-
tion for the code library describes this process.

It is slightly more complex to build a graphics program, and the ccc_win library does
not support all computing platforms. If you prefer, you can use a text version of the
graphics library that forms graphical shapes out of characters. The resulting output is not
very pretty, but it is entirely sufficient for the majority of the examples in this book (see,
for example, Figure 19). The online documentation of the code library describes how to
select the text version of the graphics library.

To display a graphics object, you cannot just send it to cout:

Circle c;
. . .
cout << c; /* Won’t display the circle */

The cout stream displays characters on the terminal, not pixels in a window. Instead, you
must send the characters to a window called cwin:

cwin << c; /* The circle will appear in the graphics window */

In the next section you will learn how to make objects that represent graphical shapes.

�

�

�

3.4 Displaying Graphical Shapes

ccc_ch03.fm Page 91 Wednesday, May 22, 2002 5:41 PM

92 CHAPTER 3 Objects

Points, circles, lines, and messages are the four graphical elements that you will use to
create diagrams. A point has an x- and a y-coordinate. For example,

Point(1, 3)

is a point with x-coordinate 1 and y-coordinate 3. What can you do with a point? You
can display it in a graphics window.

File point.cpp
1 #include "ccc_win.h"
2
3 int ccc_win_main()
4 {
5 cwin << Point(1, 3);
6
7 return 0;
8 }

You frequently use points to make more complex graphical shapes.
Circle(Point(1, 3), 2.5);

This defines a circle whose center is the point with coordinates (1, 3) and whose radius is
2.5.

As always, you can store a Point object in a variable of type Point. The following
code defines and initializes a Point variable and then displays the point. Then a circle
with center p is created and also displayed (Figure 7).

File circle.cpp
1 #include "ccc_win.h"
2
3 int ccc_win_main()
4 {
5 Point p(1, 3);
6 cwin << p << Circle(p, 2.5);
7
8 return 0;
9 }

3.5 Graphics Structures

Figure 7

Output from circle.cpp

ccc_ch03.fm Page 92 Wednesday, May 22, 2002 5:41 PM

3.5 Graphics Structures 93

Two points can be joined by a line (Figure 8).

File line.cpp
1 #include "ccc_win.h"
2
3 int ccc_win_main()
4 {
5 Point p(1, 3);
6 Point q(4, 7);
7 Line s(p, q);
8 cwin << s;
9

10 return 0;
11 }

In a graphics window you can display text anywhere you like. You need to specify what
you want to show and where it should appear (Figure 9).

File hellowin.cpp
1 #include "ccc_win.h"
2
3 int ccc_win_main()
4 {
5 Point p(1, 3);
6 Message greeting(p, "Hello, Window!");
7 cwin << greeting;
8
9 return 0;

10 }

The point parameter specifies the upper left corner of the message. The second parameter
can be either a string or a number.

There is one member function that all our graphical classes implement: move. If obj is
a point, circle, line, or message, then

obj.move(dx, dy)

changes the position of the object, moving the entire object by dx units in the x-direction

Figure 8 Figure 9

A Line A Message

get_end()

get_start()

get_start()

ccc_ch03.fm Page 93 Wednesday, May 22, 2002 5:41 PM

94 CHAPTER 3 Objects

and dy units in the y-direction. Either or both of dx and dy can be zero or negative (see
Figure 10). For example, the following code draws a square (see Figure 11).

File square.cpp
1 #include "ccc_win.h"
2
3 int ccc_win_main()
4 {
5 Point p(1, 3);
6 Point q = p;
7 Point r = p;
8 q.move(0, 1);
9 r.move(1, 0);

10 Line s(p, q);
11 Line t(p, r);
12 cwin << s << t;
13 s.move(1, 0);
14 t.move(0, 1);
15 cwin << s << t;
16
17 return 0;
18 }

After a graphical object has been constructed and perhaps moved, you sometimes want
to know where it is currently located. There are two member functions for Point objects:
get_x and get_y. They get the x- and y-positions of the point.

The get_center and get_radius member functions return the center and radius of a
circle. The get_start and get_end member functions return the starting point and end

Figure 10

The move Operation

dx

dy

dx

dy

dx

dy

dx

dy

Figure 11

Square Drawn by square.cpp

ccc_ch03.fm Page 94 Wednesday, May 22, 2002 5:41 PM

3.5 Graphics Structures 95

point of a line. The get_start and get_text member functions on a Message object
return the starting point and the message text. Since get_center, get_start, and
get_end return Point objects, you may need to apply get_x or get_y to them to deter-
mine their x- and y-coordinates. For example,

Circle c(. . .);
. . .
double cx = c.get_center().get_x();

You now know how to construct graphical objects, and you have seen all member func-
tions for manipulating and querying them (summarized in Tables 3 through 6). The
design of these classes was purposefully kept simple, but as a result some common tasks
require a little ingenuity (see Productivity Hint 3.3).

Table 3

Functions of the
Point Class

Table 4

Functions of the
Circle Class

Table 5

Functions of the
Line Class

Name Purpose

Point(x, y) Constructs a point at location (x, y)

p.get_x() Returns the x-coordinate of point p

p.get_y() Returns the y-coordinate of point p

p.move(dx, dy) Moves point p by (dx, dy)

Name Purpose

Circle(p, r) Constructs a circle with center p and radius r

c.get_center() Returns the center point of circle c

c.get_radius() Returns the radius of circle c

c.move(dx, dy) Moves circle c by (dx, dy)

Name Purpose

Line(p, q) Constructs a line joining points p and q

l.get_start() Returns the starting point of line l

l.get_end() Returns the ending point of line l

l.move(dx, dy) Moves line l by (dx, dy)

ccc_ch03.fm Page 95 Wednesday, May 22, 2002 5:41 PM

96 CHAPTER 3 Objects

Think of Points as Objects, Not Pairs of Numbers

Suppose you want to draw a square starting with the point p as the upper left corner and with
side length 1. If p has coordinates (px, py), then the upper right corner is the point with coor-
dinates (px + 1, py). Of course, you can program that:

Point q(p.get_x() + 1, p.get_y()); /* Cumbersome */
Try to think about points as objects, not pairs of numbers. Taking this point of view, there is
a more elegant solution: Initialize q to be the same point as p, then move it to where it
belongs:

Point q = p;
q.move(1, 0); /* Simple */

Computer Graphics

The generation and manipulation of visual images is one of the most exciting applications of
the computer. We distinguish between different kinds of graphics.

Diagrams, such as numeric charts or maps, are artifacts that convey information to the
viewer (see Figure 12). They do not directly depict anything that occurs in the natural world,
but are a tool for visualizing information.

Scenes are computer-generated images that attempt to depict images of the real or an
imagined world (see Figure 13). It turns out to be quite a challenge to render light and shad-
ows accurately. Special effort must be taken so that the images do not look too neat and sim-
ple; clouds, rocks, leaves, and dust in the real world have a complex and somewhat random
appearance. The degree of realism in these images is constantly improving.

Table 6

Functions of the
Message Class

Name Purpose

Message(p, s) Constructs a message with starting point p
and text string s

Message(p, x) Constructs a message with starting point p
and a label equal to the number x

m.get_start() Returns the starting point of message m

m.get_text() Gets the text string of message m

m.move(dx, dy) Moves message m by (dx, dy)

3.3Productivity Hint�

�

�

�

�

3.2Random Fact�

�

�

�

�

�

�

�

�

ccc_ch03.fm Page 96 Wednesday, May 22, 2002 5:41 PM

3.5 Graphics Structures 97

Figure 12

Diagrams

Figure 13

Scene

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ccc_ch03.fm Page 97 Wednesday, May 22, 2002 5:41 PM

98 CHAPTER 3 Objects

Manipulated images are photographs or film footage of actual events that have been con-
verted to digital form and edited by the computer (see Figure 14). For example, film
sequences of the movie Apollo 13 were produced by starting from actual images and changing
the perspective, showing the launch of the rocket from a more dramatic viewpoint.

Computer graphics is one of the most challenging fields in computer science. It requires
processing of massive amounts of information at very high speed. New algorithms are con-
stantly invented for this purpose. Viewing overlapping three-dimensional objects with curved
boundaries requires advanced mathematical tools. Realistic modeling of textures and biologi-
cal entities requires extensive knowledge of mathematics, physics, and biology.

We need to have an agreement on the meaning of particular coordinates. For example,
where is the point with x-coordinate 1 and y-coordinate 3 located? Some graphics sys-
tems use pixels, the individual dots on the display, as coordinates, but different displays
have different pixel counts and densities. Using pixels makes it difficult to write pro-
grams that look pleasant on every display screen. The library supplied with this book uses
a coordinate system that is independent of the display.

Figure 15 shows the default coordinate system used by this book’s library. The origin
is at the center of the screen, and the x-axis and y-axis are 10 units long in either direc-
tion. The axes do not actually appear (unless you create them yourself by drawing Line
objects).

This default coordinate system is fine for simple test programs, but it is useless when
dealing with real data. For example, suppose we want to show a graph plotting the aver-
age temperature (degrees Celsius) in Phoenix, Arizona, for every month of the year. The
temperature ranges from 11°C in January to 33°C in July (see Table 7).

Figure 14

Manipulated Image

�

�

�

�

�

�

�

�

�

�

3.6 Choosing a Coordinate System

ccc_ch03.fm Page 98 Wednesday, May 22, 2002 5:41 PM

3.6 Choosing a Coordinate System 99

Even the January data
cwin << Point(1, 11);

won’t show up in the window at all! In this situation, we need to change from the default
coordinate system to one that makes sense for our particular program. Here, the x-coor-
dinates are the month values, ranging from 1 to 12. The y-coordinates are the tempera-
ture values, ranging from 11 to 33. Figure 16 shows the coordinate system that we need.
As you can see, the top left corner is (1, 33) and the bottom right corner is (12, 11).

Figure 15 Figure 16

Default Coordinate System for
Graphics Library

Coordinate System for Temperature

10

10−10

−10 121
11

33

Table 7

Average Temperatures
in Phoenix, Arizona

Month Average Temperature Month Average Temperature

January 11°C July 33°C

February 13°C August 32°C

March 16°C September 29°C

April 20°C October 23°C

May 25°C November 16°C

June 31°C December 12°C

ccc_ch03.fm Page 99 Wednesday, May 22, 2002 5:41 PM

100 CHAPTER 3 Objects

To select this coordinate system, use the following instruction:
cwin.coord(1, 33, 12, 11);

Following a common convention in graphics systems, you must first specify the desired
coordinates for the top left corner (which has x-coordinate 1 and y-coordinate 33), then
the desired coordinates for the bottom right corner (x = 12, y = 11).

Here is the complete program:

File phoenix.cpp
1 #include "ccc_win.h"
2
3 int ccc_win_main()
4 {
5 cwin.coord(1, 33, 12, 11);
6 cwin << Point(1, 11);
7 cwin << Point(2, 13);
8 cwin << Point(3, 16);
9 cwin << Point(4, 20);

10 cwin << Point(5, 25);
11 cwin << Point(6, 31);
12 cwin << Point(7, 33);
13 cwin << Point(8, 32);
14 cwin << Point(9, 29);
15 cwin << Point(10, 23);
16 cwin << Point(11, 16);
17 cwin << Point(12, 12);
18
19 return 0;
20 }

Figure 17 shows the output of the program.

Figure 17

Average Temperatures in
Phoenix, Arizona

ccc_ch03.fm Page 100 Wednesday, May 22, 2002 5:41 PM

3.6 Choosing a Coordinate System 101

Choose a Convenient Coordinate System

Whenever you deal with real-world data, you should set a coordinate system that is matched
to the data. Figure out which range of x- and y-coordinates is most convenient for you. For
example, suppose you want to display a tic-tac-toe board (see Figure 18).

You could labor mightily and figure out where the lines are in relation to the default
coordnate system, or you can simply set your own coordinate system with (0, 0) in the top left
corner and (3, 3) in the bottom right corner.

#include "ccc_win.h"

int ccc_win_main()
{
 cwin.coord(0, 0, 3, 3);
 Line horizontal(Point(0, 1), Point(3, 1));
 cwin << horizontal;
 horizontal.move(0, 1);
 cwin << horizontal;
 Line vertical(Point(1, 0), Point(1, 3));
 cwin << vertical;
 vertical.move(1, 0);
 cwin << vertical;

 return 0;
}

Some people have horrible memories about coordinate transformations from their high
school geometry class and have taken a vow never to think about coordinates again for the
remainder of their lives. If you are among them, you should reconsider. In the CCC graphics
library, coordinate systems are your friend—they do all the horrible algebra for you, so you
don’t have to program it by hand.

3.4Productivity Hint�

Figure 18

Coordinate System for a
Tic-Tac-Toe Board

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0
0

3

3

ccc_ch03.fm Page 101 Wednesday, May 22, 2002 5:41 PM

102 CHAPTER 3 Objects

Just as stream output does not work with the graphics window, you cannot use stream
input either. Instead, you must ask the window to get input for you. The command is

string response = cwin.get_string(prompt);
This is how you inquire about the user name:

string name = cwin.get_string("Please type your name:");

The prompt and a field for typing the input are displayed in a special input area. Depend-
ing on your computer system, the input area is in a dialog box or at the top or bottom of
the graphics window. The user can then type input. After the user hits the Enter key, the
user’s keystrokes are placed into the name string. The message prompt is then removed
from the screen.

The get_string function always returns a string. Use get_int or get_double to read
an integer or floating-point number:

int age = cwin.get_int("Please enter your age:");

The user can specify a point with the mouse. To prompt the user for mouse input, use
Point response = cwin.get_mouse(prompt);

3.7 Getting Input from the Graphics Windo w

Table 8

Functions of the GraphicWindow Class

Name Purpose

w.coord(x1, y1, x2, y2) Sets the coordinate system for subsequent
drawing: (x1, y1) is the top left corner,

(x2, y2) the bottom right corner

w << x Displays the object x (a point, circle, line,
or message) in window w

w.clear() Clears window w (erases its contents)

w.get_string(p) Displays prompt p in window w and
returns the entered string

w.get_int(p) Displays prompt p in window w and
returns the entered integer

w.get_double(p) Displays prompt p in window w and
returns the entered floating-point value

w.get_mouse(p) Displays prompt p in window w and
returns the mouse click point

ccc_ch03.fm Page 102 Wednesday, May 22, 2002 5:41 PM

3.8 Comparing Visual and Numerical Information 103

For example,
Point center = cwin.get_mouse("Click center of circle");

The user can move the mouse to the desired location. Once the user clicks on the mouse
button, the prompt is cleared and the selected point is returned.

Here is a program that puts these functions (summarized in Table 8) to work. It asks
the user to enter a name and to try to click inside a circle. Then the program displays the
point that the user specified.

File click.cpp
1 #include "ccc_win.h"
2
3 int ccc_win_main()
4 {
5 string name = cwin.get_string("Please type your name:");
6 Circle c(Point(0, 0), 1);
7 cwin << c;
8 Point m = cwin.get_mouse("Please click inside the circle.");
9 cwin << m << Message(m, name + ", you clicked here");

10
11 return 0;
12 }

The next example shows how one can look at the same problem both visually and
numerically. You want to determine the intersection between a line and a circle. The cir-
cle is centered on the screen. The user specifies a radius of the circle and the y-intercept
of a horizontal line. You then draw the circle and the line.

File intsect1.cpp
1 #include "ccc_win.h"
2
3 int ccc_win_main()
4 {
5 double radius = cwin.get_double("Radius: ");
6 Circle c(Point(0, 0), radius);
7
8 double b = cwin.get_double("Line position: ");
9 Line s(Point(-10, b), Point(10, b));

10
11 cwin << c << s;
12
13 return 0;
14 }

Figure 19 shows the output of this program.

3.8 Comparing Visual and Numerical Information

ccc_ch03.fm Page 103 Wednesday, May 22, 2002 5:41 PM

104 CHAPTER 3 Objects

Now suppose you would like to know the exact coordinates of the intersection points.
The equation of the circle is

where r is the radius (which was given by the user). You also know y. A horizontal line
has equation y = b, and b is another user input. Thus x is the remaining unknown, and
you can solve for it. You expect two solutions, corresponding to

Plot both points and label them with the numerical values. If you do it right, these two
points will show up right on top of the actual intersections in the picture. If you do it
wrong, the two points will be at the wrong place.

Here is the code to compute and plot the intersection points.

File intsect2.cpp
1 #include "ccc_win.h"
2
3 int ccc_win_main()
4 {
5 double radius = cwin.get_double("Radius: ");
6 Circle c(Point(0, 0), radius);
7

[

Figure 19

Intersection of a Line and a Circle
(Using the Text Version of the Graphics Library)

****** ******

*** ***

** **
** **
* *
* *
* *
* *
* *
* *
* *
** **
** **

** **
*** ***

****** ******

x y r2 2 2+ =

x r b1 2
2 2

, = ± −

ccc_ch03.fm Page 104 Wednesday, May 22, 2002 5:41 PM

3.8 Comparing Visual and Numerical Information 105

8 double b = cwin.get_double("Line position: ");
9 Line s(Point(-10, b), Point(10, b));

10
11 cwin << c << s;
12
13 double root = sqrt(radius * radius - b * b);
14
15 Point p1(root, b);
16 Point p2(-root, b);
17
18 Message m1(p1, p1.get_x());
19 Message m2(p2, p2.get_x());
20
21 cwin << p1 << p2 << m1 << m2;
22
23 return 0;
24 }

Figure 20 shows the combined output. The results match perfectly, so you can be confi-
dent that you did everything correctly. See Quality Tip 3.1 for more information on ver-
ifying that this program works correctly.

Figure 20

Computing the Intersection Points

ccc_ch03.fm Page 105 Wednesday, May 22, 2002 5:41 PM

106 CHAPTER 3 Objects

At this point you should be careful to specify only lines that intersect the circle. If the
line doesn’t meet the circle, then the program will attempt to compute a square root of a
negative number, and it will terminate with a math error. You do not yet know how to
implement a test to protect against this situation. That will be the topic of the next
chapter.

Calculate Sample Data Manually

It is difficult or impossible to prove that a given program functions correctly in all cases. For
gaining confidence in the correctness of a program, or for understanding why it does not
function as it should, manually calculated sample data are invaluable. If the program arrives
at the same results as the manual calculation, your confidence in it is strengthened. If the
manual results differ from the program results, you have a starting point for the debugging
process.

Surprisingly, many programmers are reluctant to perform any manual calculations as soon
as a program carries out the slightest bit of algebra. Their math phobia kicks in, and they
irrationally hope that they can avoid the algebra and beat the program into submission by
random tinkering, such as rearranging the + and − signs. Random tinkering is always a great
time sink, but it rarely leads to useful results.

It is much smarter to look for test cases that are easy to compute and representative of the
problem to be solved. The example in Figure 21 shows three easy cases that can be computed
by hand and then compared against program runs.

First, let the horizontal line pass through the center of the circle. Then you expect the
distance between the center and the intersection point to be the same as the radius of the cir-
cle. Let the radius be 2. The y position is 0 (the center of the window). You expect

Now, that wasn’t so hard.
Next, let the horizontal line touch the circle on the top. Again, fix the radius to be 2.

Then the y position is also 2, and of course . That was pretty easy, too.

3.1Quality Tip�

Figure 21

Three Test Cases

�

�

�

�

�

�

�

�

�

�

�

�

x x1
2 2

22 0 2 2= − = = −,

x1 x2 0= =

ccc_ch03.fm Page 106 Wednesday, May 22, 2002 5:41 PM

3.8 Comparing Visual and Numerical Information 107

The first two cases were boundary test cases of the problem. A program may work correctly
for several special cases but still fail for more typical input values. Therefore you must come
up with an intermediate test case, even if it means a bit more computation. Choose a config-
uration where the center of the circle and the points of intersection form a right triangle.
If the radius of the circle is again 2, then the height of the triangle is . This looks com-
plicated; try instead choosing the height of the triangle to be 2. Thus, the base has length 4,
and the radius of the circle is . Therefore, enter radius 2.828427, enter y-position 2, and
expect .

Running the program with these three inputs confirms the manual calculations. The
computer calculations and the manual reasoning did not use the same formulas, so you can
have a great deal of confidence in the validity of the program.

Computer Networks and the Internet

Home computers and laptops are usually self-contained units with no permanent connection
to other computers. Office and lab computers, however, are usually connected with each
other and with larger computers: so-called servers. A server can store application programs
and make them available on all computers on the network. Servers can also store data, such as
schedules and mail messages, that everyone can retrieve. Networks that connect the comput-
ers in one building are called local area networks, or LANs.

Other networks connect computers in geographically dispersed locations. Such networks
are called wide area networks or WANs. The most prominent wide area network is the Inter-
net. At the time of this writing, the Internet is in a phase of explosive growth. In 1994 the
Internet connected about two million computers. Nobody knows for certain how many users
have access to the Internet, but in 2002 the user population is estimated to be about half a bil-
lion. The Internet grew out of the ARPAnet, a network of computers at universities that was
funded by the Advanced Research Planning Agency of the U.S. Department of Defense. The
original motivation behind the creation of the network was the desire to run programs on
remote computers. Using remote execution, a researcher at one institution would be able to
access an underutilized computer at a different site. It quickly became apparent, though, that
remote execution was not what the network was actually used for. The principal usage was
electronic mail: the transfer of messages between computer users at different locations. To this
day, electronic mail is one of the most compelling applications of the Internet.

Over time, more and more information became available on the Internet. The informa-
tion was created by researchers and hobbyists and made freely available to anyone, either out
the goodness of their hearts or for self-promotion. For example, the GNU project is produc-
ing a set of high-quality operating system utilities and program development tools that can be
used freely by anyone (ftp://prep.ai.mit.edu/pub/gnu). Project Gutenberg makes avail-
able the text of important classic books, whose copyright has expired, in computer-readable
form (http://www.promo.net/pg).

The first interfaces to retrieve this information were clumsy and hard to use. All that
changed with the appearance of the World Wide Web (WWW). The World Wide Web
brought two major advances to Internet information. The information could contain graphics
and fonts—a great improvement over the older text-only format—and it became possible to

1
2 2

2 2
x1 2 x2, 2–= =

3.3Random Fact�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ccc_ch03.fm Page 107 Wednesday, May 22, 2002 5:41 PM

108 CHAPTER 3 Objects

embed links to other information pages. Using a browser such as Netscape, exploring the infor-
mation becomes easy and fun (Figure 22).

1. We use objects in programs when we need to manipulate data that are more complex
than just numbers and strings. Every object belongs to a class. A class determines
the behavior of its objects. In this chapter you became familiar with objects from a
number of classes that were predefined for use with this textbook. However, you
must wait until Chapter 6 to be able to define your own classes.

2. Objects are constructed with the constructor notation. Once an object is con-
structed, member functions can be applied to it with the dot notation.

3. This book describes a library of graphical structures that are used for interesting and
entertaining examples. Points, lines, circles, and messages can be displayed in a win-

Figure 22

A Web Browser

Chapter Summary

ccc_ch03.fm Page 108 Wednesday, May 22, 2002 5:41 PM

Further Reading 109

dow on the computer screen. Programs can obtain both text and mouse input from
the user. When writing programs that display data sets, you should select a coordi-
nate system that fits the data points.

[1] C. Eames and R. Eames, A Computer Perspective, Harvard Press, Cambridge, MA, 1973.
A pictorial based on an exhibition of the history and social impact of computing. It contains
many entertaining and interesting pictures of historic computing devices, their inventors, and
their impact on modern life.

Exercise R3.1. Explain the difference between an object and a class.

Exercise R3.2. Give the C++ code for an object of class Time and for an object variable of
class Time.

Exercise R3.3. Explain the differences between a member function and a non-member
function.

Exercise R3.4. Explain the difference between
Point(3, 4);

and
Point p(3, 4);

Exercise R3.5. What are the construction parameters for a Circle object?

Exercise R3.6. What is default construction?

Exercise R3.7. Give the C++ code to construct the following objects:

(a) Lunch time
(b) The current time
(c) The top right corner of the graphics window in the default coordinate system
(d) Your instructor as an employee (make a guess for the salary)
(e) A circle filling the entire graphics window in the default coordinate system
(f) A line representing the x-axis from −10 to 10.

Write the code for objects, not object variables.

Exercise R3.8. Repeat the preceding exercise, but now define variables that are initialized
with the required values.

Further Reading

Review Exercises

ccc_ch03.fm Page 109 Wednesday, May 22, 2002 5:41 PM

110 CHAPTER 3 Objects

Exercise R3.9. Find the errors in the following statements:

(a) Time now();

(b) Point p = (3, 4);

(c) p.set_x(-1);

(d) cout << Time

(e) Time due_date(2004, 4, 15);

(f) due_date.move(2, 12);

(g) seconds_from(millennium);

(h) Employee harry("Hacker", "Harry", 35000);

(i) harry.set_name("Hacker, Harriet");

Exercise R3.10. Describe all constructors of the Time class. List all member functions
that can be used to change a Time object. List all member functions that don’t change the
Time object.

Exercise R3.11. What is the value of t after the following operations?
Time t;
t = Time(20, 0, 0);
t.add_seconds(1000);
t.add_seconds(-400);

Exercise R3.12. If t1 and t2 are objects of class Time, is the following true or false?
t1.add_seconds(t2.seconds_from(t1)) is the same time as t2

Exercise R3.13. Which five classes are used in this book for graphics programming?

Exercise R3.14. What is the value of c.get_center and c.get_radius after the following
operations?

Circle c(Point(1, 2), 3);
c.move(4, 5);

Exercise R3.15. You want to plot a bar chart showing the grade distribution of all stu-
dents in your class (where A = 4.0, F = 0). What coordinate system would you choose to
make the plotting as simple as possible?

Exercise R3.16. Let c be any circle. Write C++ code to plot the circle c and another cir-
cle that touches c. Hint: Use move.

Exercise R3.17. Write C++ instructions to display the letters X and T in a graphics win-
dow, by plotting line segments.

Exercise R3.18. Suppose you run the program intsect2.cpp and give a value of 5 for the
radius of the circle and 4 for the line position. Without actually running the program,
determine what values you will obtain for the intersection points.

Exercise R3.19. Introduce an error in the program intsect2.cpp, by computing
root = sqrt(radius * radius + b * b). Run the program. What happens to the inter-
section points?

ccc_ch03.fm Page 110 Wednesday, May 22, 2002 5:41 PM

Programming Exercises 111

Exercise P3.1. Write a program that asks for the due date of the next assignment (hour,
minutes). Then print the number of minutes between the current time and the due date.

Exercise P3.2. Write a graphics program that prompts the user to click on three points.
Then draw a triangle joining the three points. Hint: To give the user feedback about the
click, it is a nice touch to draw the point after each click.

Point p = cwin.get_mouse("Please click on the first point");
cwin << p; /* Feedback for the user */

Exercise P3.3. Write a graphics program that prompts the user to click on the center of a
circle, then on one of the points on the boundary of the circle. Draw the circle that the
user specified. Hint: The radius of the circle is the distance between the two points,
which is computed as

Exercise P3.4. Write a graphics program that prompts the user to click on two points.
Then draw a line joining the points and write a message displaying the slope of the line;
that is, the “rise over run” ratio. The message should be displayed at the midpoint of the
line.

Exercise P3.5. Write a graphics program that prompts the user to click on two points.
Then draw a line joining the points and write a message displaying the length of the line,
as computed by the Pythagorean formula. The message should be displayed at the mid-
point of the line.

Exercise P3.6. Write a graphics program that prompts the user to click on three points.
Then draw a circle passing through the three points.

Exercise P3.7. Write a program that prompts the user for the first name and last name of
an employee and a starting salary. Then give the employee a 5 percent raise, and print out
the name and salary information stored in the employee object.

Exercise P3.8. Write a program that prompts the user for the names and salaries of three
employees. Then print out the average salaries of the employees.

Exercise P3.9. Write a program to plot the following face.

Exercise P3.10. Write a program to plot the string “HELLO”, using just lines and cir-
cles. Do not use the Message class, and do not use cout.

Programming Exercises

a b a bx x y y− + −()2()2

ccc_ch03.fm Page 111 Wednesday, May 22, 2002 5:41 PM

112 CHAPTER 3 Objects

Exercise P3.11. Write a program that lets a user select two lines by prompting the
user to click on both end points of the first segment, then on both end points of the
second segment. Then compute the point of intersection of the lines extending through
those segments, and plot it. (If the segments are parallel, then the lines don’t intersect, or
they are identical. In the formulas computing the intersection, this will manifest itself as
a division by 0. Since you don’t yet know how to write code involving decisions, your
program will terminate when the division by 0 happens. Doing so is acceptable for this
assignment.)

Here is the mathematics to compute the point of intersection. If and
 are the end points of the first line segment, then runs through

all points on the first line as t runs from −∞ to ∞. If and are the
end points of the second line segment, the second line is the collection of points

. The point of intersection is the point lying on both lines. That is, it is the
solution of both

and

Writing the x and y coordinates separately, we get a system of two linear equations

Find the solutions of this system. You just need the value for t. Then compute the point
of intersection as .

Exercise P3.12. Plotting a data set. Make a bar chart to plot a data set like the following:

Prompt the user to type in four names and measurements. Then display a bar graph.
Make the bars horizontal for easier labeling.

a a ax y= (),
b b bx y= (), ta t b+ −()1

c c cx y= (), d d dx y= (),

uc u d+ −()1

ta t b uc u d+ −() = + −()1 1

a b t d c u d b−() + −() = −

a b t d c u d b

a b t d c u d b

x x x x x x

y y y y y y

− + − = −

−() + −()
() ()

= −

ta t b+ −()1

Name Longest span (ft)

Golden Gate 4,200

Brooklyn 1,595

Delaware Memorial 2,150

Mackinaw 3,800

ccc_ch03.fm Page 112 Wednesday, May 22, 2002 5:41 PM

Programming Exercises 113

Hint: Set the window coordinates to 5,000 in the x-direction and 4 in the y-direction.

Exercise P3.13. Write a program that displays the Olympic rings. Hint: Construct and
display the first circle, then call move four times.

Exercise P3.14. Write a graphics program that asks the user to enter the names of three
employees and their salaries. Make three employee objects. Draw a stick chart showing
the names and salaries of the employees.

Exercise P3.15. Write a graphics program that asks the user to enter four data values.
Then draw a pie chart showing the data values.

Exercise P3.16. Write a graphics program that draws a clock face with the current time:

Hint: You need to determine the angles of the hour hand and the minute hand. The
angle of the minute hand is easy: The minute hand travels 360 degrees in 60 minutes.
The angle of the hour hand is harder; it travels 360 degrees in 12 × 60 minutes.

Exercise P3.17. Write a program that tests how fast a user can type. Get the time. Ask
the user to type “The quick brown fox jumps over the lazy dog”. Read a line of input.
Get the current time again in another variable of type Time. Print out the seconds
between the two times.

Golden Gate

Brooklyn

Delaware Memorial

Mackinaw

Hacker, Harry

Cracker, Carl

Bates, Bill

ccc_ch03.fm Page 113 Wednesday, May 22, 2002 5:41 PM

114 CHAPTER 3 Objects

Exercise P3.18. Your boss, Juliet Jones, is getting married and decides to change her
name. Complete the following program so that you can type in the new name for the
boss:

int main()
{
 Employee boss("Jones, Juliet", 45000.00);
 /* your code goes here; leave the code above and below unchanged */

 cout << "Name: " << boss.get_name() << "\n";
 cout << "Salary: " << boss.get_salary() << "\n";

 return 0;
}

The problem is that there is no set_name member function for the Employee class. Hint:
Make a new object of type Employee with the new name and the same salary. Then
assign the new object to boss.

Exercise P3.19. Write a program that draws the picture of a house. It could be as simple
as the figure below, or if you like, make it more elaborate (3-D, skyscraper, marble col-
umns in the entryway, whatever).

ccc_ch03.fm Page 114 Wednesday, May 22, 2002 5:41 PM

